1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use rand;
use rand::distributions::IndependentSample;
use nalgebra::{Norm};
use vptree::{VPTree, MetricItem};
use std::cmp;
use std::collections::BTreeMap;
use num::Zero;
use model::{Vector};

use super::tsne_util::{Vec2f, cauchy_pdf_d2, find_p_for_perplexity, dist_sq};
use super::tsne_options::{TSNEOptions};
use super::quadtree::{QuadTree};

pub struct BHTSNE {
    options: TSNEOptions,
    pub sigmas: Vec<f32>
}

struct IndexedVec<'a> {
    index: usize,
    vec: &'a Vector<f32>
}

fn norm(v: &Vector<f32>) -> f32 {
    let s2: f32 = v.iter().map(|x| *x * *x).sum();
    s2.sqrt()
}

impl<'a> MetricItem<f32> for IndexedVec<'a> {
    fn distance(&self, other: &Self) -> f32 {
        norm(&(self.vec - other.vec))
    }
}

type SparseBTMatrix = Vec<BTreeMap<usize, f32>>;

impl BHTSNE {
    pub fn new(opt: Option<TSNEOptions>) -> Self {
        BHTSNE {
            options: opt.unwrap_or(TSNEOptions::default()),
            sigmas: Vec::new()
        }
    }

    /// Return the cost of the current mapping and the gradient
    fn cost_gradient(p_sym: &SparseBTMatrix, p_mult: f32,
                     y: &[Vec2f], y_qt: &QuadTree) -> (f32, Vec<Vec2f>) {
        // collect frep_z and z components
        let freps: Vec<_> = y.iter().map(|x| y_qt.compute_frep_quantities(x, 0.5)).collect();

        // Full normalization constant.
        let z: f32 = freps.iter().map(|x| x.1).sum();

        let cost_nomult = p_sym.iter().enumerate().map(|(i, row)| {
            let yi = y[i];
            row.iter().map(|(j, p_ij)| {
                let d = yi - y[*j];
                let q_ij = cauchy_pdf_d2(d.norm_squared()) / z;
                p_ij * (p_ij / q_ij).ln()
            }).sum::<f32>()
        }).sum::<f32>();

        let cost = p_mult * (cost_nomult + p_mult.ln());

        // Gradient
        let grad: Vec<_> = p_sym.iter().enumerate().map(|(i, row)| {
            let p = y[i];

            // compute f_attr (and parts of cost)
            let f_attr = row.iter().map(|(j, v)| {
                let d = p - y[*j];
                let q_z = cauchy_pdf_d2(d.norm_squared());
                (v * q_z) * d
            }).fold(Vec2f::zero(), |acc, x| acc + x);

            // compute dC/di
            let frep: Vec2f = freps[i].0 / z;
            4.0 * (f_attr * p_mult + frep)
        }).collect();

        (cost, grad)
    }

    /// Generate a set of output vectors randomly.
    ///
    /// Uses a bivariate symmetric gaussian distribution, centered at
    /// the origin with a standard deviation of `s`.
    fn initial_result(&self, n: usize, s: f32) -> Vec<Vec2f> {
        let mut rng = rand::thread_rng();
        let normal = rand::distributions::Normal::new(0.0, s as f64);
        (0..n).map(|_| {
            let x = normal.ind_sample(&mut rng) as f32;
            let y = normal.ind_sample(&mut rng) as f32;
            Vec2f::new(x, y)
        }).collect()
    }

    // Compute the joint probabilities on the input distance matrix.
    fn sparse_input_jp_matrix(&mut self, inputs: &[Vector<f32>]) -> SparseBTMatrix {
        let items: Vec<IndexedVec> = inputs.iter().enumerate().map(|(i, v)| IndexedVec{ index: i, vec: v }).collect();
        let ni = inputs.len();
        self.sigmas.clear();

        let tree = VPTree::new(items).unwrap();

        let nnn = cmp::min((self.options.perplexity * 3.0).floor() as usize, ni - 1);

        let mut p_cond: SparseBTMatrix = Vec::with_capacity(ni);

        for i in 0..ni {
            // find the nearest neighbor to each vector
            let target = &inputs[i];
            let mut nn = tree.nearest_neighbors(&IndexedVec{ index: i, vec: target }, nnn+1, true);
            assert!(nn[0].index == i);

            // The first element is should be the element itself, so remove that.
            nn.remove(0);

            // compute the conditional probabilities
            let r2: Vec<f32> = nn.iter().map(|ref x| dist_sq(&target, &x.vec)).collect();
            let v = find_p_for_perplexity(&r2, self.options.perplexity).unwrap();
            self.sigmas.push(v.sigma);
            let mut x = BTreeMap::new();
            for (i, v) in nn.iter().zip(&v.probs) {
                x.insert(i.index, *v);
            }
            p_cond.push(x);
        }

        // Symmetrize the p_cond 'matrix' to get an p_sym 'matrix'.
        let normalization: f32 = 0.5 / (ni as f32);
        let mut p_sym: SparseBTMatrix = (0..ni).map(|_| BTreeMap::new()).collect();

        for (i, row) in p_cond.into_iter().enumerate() {
            for (j, val) in &row {
                {
                    let v_ij = p_sym[i].entry(*j).or_insert(0.0);
                    *v_ij += val * normalization;
                }
                {
                let v_ji = p_sym[*j].entry(i).or_insert(0.0);
                    *v_ji += val * normalization;
                }
            }
        }

        p_sym
    }

    /// Perform the visualization reduction from a set of inputs to
    /// output vectors.
    pub fn reduction(&mut self, inputs: &[Vector<f32>]) -> Vec<Vec2f> {
        let n = inputs.len();
        let mut eta = self.options.learning_rate;

        // Use the squared distance matrix to compute the implied joint
        // probabilities, based on the perplexity
        let p = self.sparse_input_jp_matrix(inputs);

        let early_p_mult = match self.options.early_exaggeration {
            Some(ref eeo) => eeo.mult,
            None => 1.0
        };

        let mut result = self.initial_result(n, self.options.initial_spread);

        let qt = QuadTree::new(&result).unwrap();

        let r = Self::cost_gradient(&p, early_p_mult, &result, &qt);
        let mut cost = r.0;
        let mut grad = r.1;

        let mut prev_result = result.clone();
        let mut new_result = result.clone();

        const MAX_BAD_ITERATIONS: usize = 100;

        for iter in 0..self.options.num_iterations {
            let use_p_mult = match self.options.early_exaggeration {
                Some(ref eeo) =>
                    if iter < eeo.iterations { early_p_mult } else { 1.0 },
                None => 1.0
            };

            let mut bad_iterations = 0;
            while bad_iterations < MAX_BAD_ITERATIONS {
                // Evaluate the new result at the given learning rate.
                for i in 0..n {
                    let m = self.options.momentum.rate(iter);
                    let curr = result[i];
                    let prev = prev_result[i];
                    let g = grad[i];
                    new_result[i] = curr - g * eta - g * m * (curr - prev);
                }

                // Compute the cost and gradient at the new location.
                let new_qt = QuadTree::new(&new_result).unwrap();
                let (new_cost, new_grad) = Self::cost_gradient(&p, use_p_mult, &new_result, &new_qt);

                if new_cost < cost - (n as f32) * 1e-10 {
                    // If the descent was effective, update the
                    // learning rate and use the new result.
                    cost = new_cost;
                    grad = new_grad;

                    eta *= 1.05;
                    break
                } else {
                    let new_eta = eta * 0.5;

                    // Otherwise, decrease the learning rate.
                    eta = new_eta;
                    bad_iterations += 1;
                }
            }
            if bad_iterations >= MAX_BAD_ITERATIONS {
                break;
            }

            // Rotate new_result -> result -> prev_result -> new_results, with no allocations.
            let temp = prev_result;
            prev_result = result;
            result = new_result;
            new_result = temp;
        }

        result
    }
}