1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use rand;
use rand::distributions::IndependentSample;
use nalgebra::{Norm};
use util::remove_diagonal;

use super::tsne_util::{Vec2f, cauchy_pdf_d2, find_p_for_perplexity, dist_sq};
use super::tsne_options::{TSNEOptions};
use model::{Vector, Matrix};

pub struct TSNE {
    options: TSNEOptions,
}

// Compute the joint probabilities on the input distance matrix.
pub fn input_joint_probability_matrix(inputs: &[Vector<f32>], perplexity: f32) -> Matrix<f32> {
    let n = inputs.len();

    // Compute the squared distance matrix
    let mut d2 = Matrix::zeros((n,n));
    for i in 0..n {
        let xi = &inputs[i];
        for j in 0..i {
            let d = dist_sq(xi, &inputs[j]);
            assert!(d > 0.0);
            d2[[i, j]] = d;
            d2[[j, i]] = d;
        }
    }

    let m = remove_diagonal(d2);
    let n = m.rows();
    let mut p: Vec<f32> = Vec::with_capacity(n*n);


    // Compute the conditional probabilities for each row
    for (i, r) in m.outer_iter().enumerate() {
        let s: &[f32] = r.as_slice().unwrap();
        let v = find_p_for_perplexity(s, perplexity).unwrap();
        p.extend_from_slice(&v.probs[0..i]);
        p.push(0.0);
        p.extend_from_slice(&v.probs[i..]);
    }

    let f : f32 = 1.0 / (2.0 * (n as f32));
    let pm = Matrix::from_shape_vec((n, n), p).ok().unwrap();

    // Return the symmetrized version
    let mut p_sym = Matrix::zeros((n, n));
    for i in 0..n {
        for j in 0..i {
            let x = (pm[(i, j)] + pm[[j, i]]) * f;

            p_sym[[i, j]] = x;
            p_sym[[j, i]] = x;
        }
    }

    p_sym
}


// Given the output vectors, compute the output matrix q.
pub fn output_q_matrix(v: &Vec<Vec2f>) -> Matrix<f32> {
    let n = v.len();
    let mut c = Matrix::zeros((n, n));
    for i in 0..n {
        for j in 0..i {
            let d2 = (v[i] - v[j]).norm_squared();
            let w = cauchy_pdf_d2(d2);
            c[[i, j]] = w;
            c[[j, i]] = w;
        }
    }
    let z: f32 = c.iter().sum();
    c / z
}

/// Return the cost of the current mapping, via the KL-divergence.
pub fn cost_function(p_sym: &Matrix<f32>, q: &Matrix<f32>) -> f32 {
    let n = p_sym.rows();
    assert_eq!(n, q.rows());
    (0..n).map(|i| {
        (0..n).map(|j| {
            if i != j && p_sym[[i, j]] > 0.0 {
                p_sym[[i, j]] * (p_sym[[i, j]] / q[[i, j]]).ln()
            }
            else {
                0.0
            }
        }).sum::<f32>()
    }).sum()
}

impl TSNE {
    pub fn new(opt: Option<TSNEOptions>) -> Self {
        TSNE {
            options: opt.unwrap_or(TSNEOptions::default())
        }
    }

    /// Return the derivative of the cost functions with respect to
    /// the i'th output vector.
    fn dcost(p_sym: &Matrix<f32>, q: &Matrix<f32>, y: &Vec<Vec2f>, i: usize) -> Vec2f {
        let x = &y[i];
        y.iter().enumerate().map(|(j, e)| {
            let to_vec = *x - *e;
            let d = cauchy_pdf_d2( to_vec.norm_squared() );
            let pdiff = p_sym[[i, j]] - q[[i, j]];
            to_vec * (pdiff * d)
        }).fold(Vec2f::new(0.0, 0.0), |a, b| { a + b }) * 4.0
    }

    /// Return the full gradient of the cost function
    fn full_gradient(p_sym: &Matrix<f32>, q: &Matrix<f32>, y: &Vec<Vec2f>) -> Vec<Vec2f> {
        let n = p_sym.rows();
        (0..n).map(|i| Self::dcost(p_sym, q, y, i)).collect()

    }

    /// Generate a set of output vectors randomly.
    ///
    /// Uses a bivariate symmetric gaussian distribution, centered at
    /// the origin with a standard deviation of `s`.
    fn initial_result(&self, n: usize, s: f32) -> Vec<Vec2f> {
        let mut rng = rand::thread_rng();
        let normal = rand::distributions::Normal::new(0.0, s as f64);
        (0..n).map(|_| {
            let x = normal.ind_sample(&mut rng) as f32;
            let y = normal.ind_sample(&mut rng) as f32;
            Vec2f::new(x, y)
        }).collect()
    }


    /// Perform the visualization reduction from a set of inputs to
    /// output vectors.
    pub fn reduction(&mut self, inputs: &[Vector<f32>]) -> Vec<Vec2f> {
        let n = inputs.len();
        let mut eta = self.options.learning_rate;

        // Use the squared distance matrix to compute the implied joint
        // probabilities, based on the perplexity
        let p = input_joint_probability_matrix(inputs, self.options.perplexity);

        let early_p = match self.options.early_exaggeration {
            Some(ref eeo) => &p * eeo.mult,
            None => p.clone()
        };

        let mut result = self.initial_result(n, self.options.initial_spread);

        let mut q = output_q_matrix(&result);

        let mut cost = cost_function(&early_p, &q);

        let mut prev_result = result.clone();
        let mut new_result = result.clone();

        for iter in 0..self.options.num_iterations {
            let use_p = match self.options.early_exaggeration {
                Some(ref eeo) =>
                    if iter < eeo.iterations { &early_p } else { &p },
                None => &p
            };

            // Compute the gradient at the current result
            let grad = Self::full_gradient(&use_p, &q, &result);

            loop {
                // Evaluate the new result at the given learning rate.
                for i in 0..n {
                    let m = self.options.momentum.rate(iter);
                    let curr = result[i];
                    let prev = prev_result[i];
                    let g = grad[i];
                    new_result[i] = curr - g * eta - g * m * (curr - prev);
                }

                let new_q = output_q_matrix(&new_result);
                let new_cost = cost_function(&use_p, &new_q);

                if new_cost < cost - (n as f32) * 1e-10 {
                    // If the descent was effective, update the
                    // learning rate and use the new result.
                    q = new_q;
                    cost = new_cost;

                    eta *= 1.05;
                    break
                } else {
                    let new_eta = eta * 0.5;

                    // Otherwise, decrease the learning rate.
                    eta = new_eta;
                }
            }
            prev_result = result;
            result = new_result.clone();
        }

        result
    }
}