1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
//! # Description //! //! `linxal` is a linear algebra package on top of `ndarray`.It //! currently provides major drivers from LAPACK, but will also //! support other higher-level tasks in the future, such as linear //! regression, PCA, etc. //! //! The repository for `linxal` can be found //! [here](https://github.com/masonium/linxal). //! //! # Uasge //! //! linxal is available as a crate through cargo. Add the following line //! to your Cargo.toml, in the `dependencies` section: //! //! ```text //! [dependencies] //! ... //! linxal = "0.3" //! ``` //! //! In your `lib.rs` or `main.rs` file, use //! //! ```text //! extern crate linxal; //! use linxal::prelude::*; //! ``` //! //! The [`linxal::prelude`](./prelude) modules re-exports the most useful functionality. //! //! # Organization //! //! Most of the useful functionality for `linxal` comes in the form of //! traits, which are implemented in terms of scalars and provide //! functionality for matrices and vectors composed of the //! scalars. Most traits have a `compute` function, and variants, //! which performs the describe behavior. //! //! For instance, the `Eigen` trait, implemented for single- and //! double-precision real and complex-valued matrices, allows one to //! compute eigenvalues and eigenvectors of square matrices. //! //! ```rust //! #[macro_use] //! extern crate linxal; //! extern crate ndarray; //! //! use linxal::eigenvalues::{Eigen}; //! use linxal::types::{c32, Magnitude}; //! use ndarray::{Array, arr1, arr2}; //! //! fn main() { //! let m = arr2(&[[1.0f32, 2.0], //! [-2.0, 1.0]]); //! //! let r = Eigen::compute_into(m, false, true); //! assert!(r.is_ok()); //! //! let r = r.unwrap(); //! let true_evs = arr1(&[c32::new(1.0, 2.0), c32::new(1.0, -2.0)]); //! assert_eq_within_tol!(true_evs, r.values, 0.01); //! } //! ``` //! //! # Details //! //! ## Symmetric Algorithms //! //! Some traits and algorithms are designed only to work on symmetric //! or Hermititan matrices. Throught the library, 'Sym' or 'Symmetric' //! refers simply to symmetric matrices for real-valued matrices and //! Hermititan matrices for complex-valued matrices. //! //! Symmetric algorithms typically take a (`Symmetric`) enum //! argument. `Symmetric::Upper` indicates that the values of the //! matrix are stored in the upper-triangular portion of the //! matrix. `Symmetric::Lower` corresponds to the lower portion. For //! algorithms that take this argument, only that portion is read. So, //! for example: //! //! ```rust,ignore //! #[macro_use] //! extern crate linxal; //! extern crate ndarray; //! //! use linxal::eigenvalues::{SymEigen}; //! use ndarray::{arr1, arr2}; //! //! fn test_eig_access() { //! // `upper_only` is not symmetric, but the portion below the diagonal is never read. //! let upper_only = arr2(&[[1.0f32, 2.0], [-3.0, 1.0]]); //! //! // Since only the upper triangle is read by `SymEigen`, it is equivalent to `full`. //! let full = arr2(&[[1.0f32, 2.0], [2.0, 1.0]]); //! //! let upper_only_ev = SymEigen::compute_into(upper_only, Symmetric::Upper).unwrap(); //! let full_ev = SymEigen::compute_into(full, Symmetric::Upper).unwrap(); //! //! assert_eq_within_tol!(upper_only_ev, full_ev, 1e-5); //! } //! ``` //! #![macro_use] #[macro_use] extern crate ndarray; extern crate lapack; extern crate num_traits; pub mod util; pub mod permute; pub mod eigenvalues; pub mod svd; pub mod solve_linear; pub mod least_squares; pub mod types; pub mod factorization; #[macro_use] pub mod prelude; mod impl_prelude;