1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
use lapack::c::{sgesvd, sgesdd, dgesvd, dgesdd, cgesvd, cgesdd, zgesvd, zgesdd};
use super::types::{SVDSolution, SVDError, SingularValue};
use impl_prelude::*;
const SVD_NORMAL_LIMIT: usize = 200;
pub trait SVD<SV: SingularValue>: Sized + Clone {
fn compute_into<D>(mat: ArrayBase<D, Ix2>,
compute_u: bool,
compute_vt: bool)
-> Result<SVDSolution<Self, SV>, SVDError>
where D: DataMut<Elem = Self> + DataOwned<Elem = Self>;
fn compute<D>(mat: &ArrayBase<D, Ix2>,
compute_u: bool,
compute_vt: bool)
-> Result<SVDSolution<Self, SV>, SVDError>
where D: Data<Elem = Self>
{
let vec: Vec<Self> = mat.iter().cloned().collect();
let m = Array::from_shape_vec(mat.dim(), vec).unwrap();
Self::compute_into(m, compute_u, compute_vt)
}
}
#[derive(Debug, PartialEq)]
enum SVDMethod {
Normal,
DivideAndConquer,
}
fn select_svd_method(d: &Ix2, compute_either: bool) -> SVDMethod {
let mx = cmp::max(d.0, d.1);
if compute_either {
if mx > SVD_NORMAL_LIMIT {
SVDMethod::Normal
} else {
SVDMethod::DivideAndConquer
}
} else {
SVDMethod::DivideAndConquer
}
}
macro_rules! impl_svd {
($impl_type:ident, $sv_type:ident, $svd_func:ident, $sdd_func:ident) => (
impl SVD<$sv_type> for $impl_type {
fn compute_into<D>(mut mat: ArrayBase<D, Ix2>,
mut compute_u: bool,
mut compute_vt: bool)
-> Result<SVDSolution<$impl_type, $sv_type>, SVDError>
where D: DataMut<Elem=Self> + DataOwned<Elem = Self>{
let dim = mat.dim();
let (m, n) = dim;
let mut s = Array::default(cmp::min(m, n));
let (slice, layout, lda) = match slice_and_layout_mut(&mut mat) {
Some(x) => x,
None => return Err(SVDError::BadLayout)
};
let compute_either = compute_u || compute_vt;
let method = select_svd_method(&dim, compute_either);
if method == SVDMethod::DivideAndConquer {
compute_u = compute_either;
compute_vt = compute_either;
}
let mut u = matrix_with_layout(if compute_u { (m, m) } else { (0, 0) }, layout);
let mut vt = matrix_with_layout(if compute_vt { (n, n) } else { (0, 0) }, layout);
let job_u = if compute_u { b'A' } else { b'N' };
let job_vt = if compute_vt { b'A' } else { b'N' };
let info = match method {
SVDMethod::Normal => {
let mut superb = Array::default(cmp::min(m, n) - 2);
$svd_func(layout, job_u, job_vt, m as i32, n as i32, slice,
lda as i32, s.as_slice_mut().expect("bad s implementation"),
u.as_slice_mut().expect("bad u implementation"), m as i32,
vt.as_slice_mut().expect("bad vt implementation"), n as i32,
superb.as_slice_mut().expect("bad superb implementation"))
},
SVDMethod::DivideAndConquer => {
let job_z = if compute_u || compute_vt { b'A' } else { b'N' };
$sdd_func(layout, job_z, m as i32, n as i32, slice,
lda as i32,
s.as_slice_mut().expect("bad s implementation"),
u.as_slice_mut().expect("bad u implementation"), m as i32,
vt.as_slice_mut().expect("bad vt implementation"), n as i32)
}
};
match info {
0 => {
Ok(SVDSolution {
values: s,
left_vectors: if compute_u { Some(u) } else { None },
right_vectors: if compute_vt { Some(vt) } else { None }
})
},
x if x < 0 => {
Err(SVDError::IllegalParameter(-x - 1))
},
x if x > 0 => {
Err(SVDError::Unconverged)
},
_ => {
unreachable!();
}
}
}
}
)
}
impl_svd!(f32, f32, sgesvd, sgesdd);
impl_svd!(f64, f64, dgesvd, dgesdd);
impl_svd!(c32, f32, cgesvd, cgesdd);
impl_svd!(c64, f64, zgesvd, zgesdd);