1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![crate_name="ndarray"]
#![doc(html_root_url = "http://bluss.github.io/rust-ndarray/master/")]

//! The `ndarray` crate provides an N-dimensional container for general elements
//! and for numerics.
//!
//! - [`ArrayBase`](struct.ArrayBase.html):
//!   The N-dimensional array type itself.
//! - [`Array`](type.Array.html):
//!   An array where the data is owned uniquely.
//! - [`RcArray`](type.RcArray.html):
//!   An array where the data has shared ownership and is copy on write.
//! - [`ArrayView`](type.ArrayView.html), [`ArrayViewMut`](type.ArrayViewMut.html):
//!   Lightweight array views.
//!
//! ## Highlights
//!
//! - Generic N-dimensional array
//! - Slicing, also with arbitrary step size, and negative indices to mean
//!   elements from the end of the axis.
//! - There is both a copy on write array (`RcArray`), or a regular uniquely owned array
//!   (`Array`), and both can use read-only and read-write array views.
//! - Iteration and most operations are efficient on arrays with contiguous
//!   innermost dimension.
//! - Array views can be used to slice and mutate any `[T]` data using
//!   `ArrayView::from` and `ArrayViewMut::from`.
//!
//! ## Crate Status
//!
//! - Still iterating on and evolving the API
//!   + The crate is continuously developing, and breaking changes are expected
//!     during evolution from version to version. We adhere to semver,
//!     but alpha releases break at will.
//!   + We adopt the newest stable rust features we need.
//! - Performance status:
//!   + Performance of an operation depends on the memory layout of the array
//!     or array view. Especially if it's a binary operation, which
//!     needs matching memory layout to be efficient (with some exceptions).
//!   + Arithmetic optimizes very well if the arrays are have contiguous inner dimension.
//!   + The higher order functions like ``.map()``, ``.map_inplace()`` and
//!     ``.zip_mut_with()`` are the most efficient ways to
//!     perform single traversal and lock step traversal respectively.
//!   + ``.iter()`` is efficient for c-contiguous arrays.
//!   + Can use BLAS in matrix multiplication.
//!
//! ## Crate Feature Flags
//!
//! The following crate feature flags are available. They are configured in your
//! `Cargo.toml`.
//!
//! - `rustc-serialize`
//!   - Optional, compatible with Rust stable
//!   - Enables serialization support for rustc-serialize 0.3
//! - `serde`
//!   - Optional, compatible with Rust stable
//!   - Enables serialization support for serde 0.8
//! - `blas`
//!   - Optional and experimental, compatible with Rust stable
//!   - Enable transparent BLAS support for matrix multiplication. Pluggable
//!     backend via `blas-sys`.
//!

#[cfg(feature = "serde")]
extern crate serde;
#[cfg(feature = "rustc-serialize")]
extern crate rustc_serialize as serialize;

#[cfg(feature="blas")]
extern crate blas_sys;

extern crate matrixmultiply;

extern crate itertools;
extern crate num_traits as libnum;
extern crate num_complex;

use std::rc::Rc;
use std::slice::{self, Iter, IterMut};
use std::marker::PhantomData;

pub use dimension::{
    Dimension,
    RemoveAxis,
    Axis,
};

pub use dimension::NdIndex;
pub use indexes::Indexes;
pub use error::{ShapeError, ErrorKind};
pub use si::{Si, S};

use iterators::Baseiter;
pub use iterators::{
    InnerIter,
    InnerIterMut,
    AxisIter,
    AxisIterMut,
    AxisChunksIter,
    AxisChunksIterMut,
};

pub use arraytraits::AsArray;
pub use linalg_traits::{LinalgScalar, NdFloat};
pub use stacking::stack;

pub use shape_builder::{ ShapeBuilder };

mod aliases;
mod arraytraits;
#[cfg(feature = "serde")]
mod array_serde;
#[cfg(feature = "rustc-serialize")]
mod array_serialize;
mod arrayformat;
mod data_traits;

pub use aliases::*;

pub use data_traits::{
    Data,
    DataMut,
    DataOwned,
    DataShared,
    DataClone,
};

mod dimension;

mod free_functions;
pub use free_functions::*;

mod indexes;
mod iterators;
mod linalg_traits;
mod linspace;
mod numeric_util;
mod si;
mod error;
mod shape_builder;
mod stacking;

/// Implementation's prelude. Common types used everywhere.
mod imp_prelude {
    pub use prelude::*;
    pub use aliases::*;
    pub use {
        RemoveAxis,
        Data,
        DataMut,
        DataOwned,
        DataShared,
        ViewRepr,
    };
    pub use dimension::DimensionExt;
    /// Wrapper type for private methods
    #[derive(Copy, Clone, Debug)]
    pub struct Priv<T>(pub T);
}

pub mod prelude;

/// Array index type
pub type Ix = usize;
/// Array index type (signed)
pub type Ixs = isize;

/// An *N*-dimensional array.
///
/// The array is a general container of elements. It cannot grow or shrink, but
/// can be sliced into subsets of its data.
/// The array supports arithmetic operations by applying them elementwise.
///
/// The `ArrayBase<S, D>` is parameterized by `S` for the data container and
/// `D` for the dimensionality.
///
/// Type aliases [`Array`], [`RcArray`], [`ArrayView`], and [`ArrayViewMut`] refer
/// to `ArrayBase` with different types for the data container.
///
/// [`Array`]: type.Array.html
/// [`RcArray`]: type.RcArray.html
/// [`ArrayView`]: type.ArrayView.html
/// [`ArrayViewMut`]: type.ArrayViewMut.html
///
/// ## Contents
///
/// + [Array and RcArray](#ownedarray-and-rcarray)
/// + [Indexing and Dimension](#indexing-and-dimension)
/// + [Slicing](#slicing)
/// + [Subviews](#subviews)
/// + [Arithmetic Operations](#arithmetic-operations)
/// + [Broadcasting](#broadcasting)
/// + [Methods](#methods)
/// + [Methods for Array Views](#methods-for-array-views)
///
/// ## `Array` and `RcArray`
///
/// `Array` owns the underlying array elements directly (just like
/// a `Vec`), while [`RcArray`](type.RcArray.html) is a an array with reference
/// counted data. `RcArray` can act both as an owner or as a view in that regard.
/// Sharing requires that it uses copy-on-write for mutable operations.
/// Calling a method for mutating elements on `RcArray`, for example
/// [`view_mut()`](#method.view_mut) or [`get_mut()`](#method.get_mut),
/// will break sharing and require a clone of the data (if it is not uniquely held).
///
/// Note that all `ArrayBase` variants can change their view (slicing) of the
/// data freely, even when their data can’t be mutated.
///
/// ## Indexing and Dimension
///
/// Array indexes are represented by the types `Ix` and `Ixs` (signed).
///
/// The dimensionality of the array determines the number of *axes*, for example
/// a 2D array has two axes. These are listed in “big endian” order, so that
/// the greatest dimension is listed first, the lowest dimension with the most
/// rapidly varying index is the last.
///
/// In a 2D array the index of each element is `(row, column)`
/// as seen in this 3 × 3 example:
///
/// ```ignore
/// [[ (0, 0), (0, 1), (0, 2)],  // row 0
///  [ (1, 0), (1, 1), (1, 2)],  // row 1
///  [ (2, 0), (2, 1), (2, 2)]]  // row 2
/// //    \       \       \
/// //   column 0  \     column 2
/// //            column 1
/// ```
///
/// The number of axes for an array is fixed by the `D` parameter: `Ix` for
/// a 1D array, `(Ix, Ix)` for a 2D array etc. The `D` type is also used
/// for element indices in `.get()` and `array[index]`. The dimension type `Vec<Ix>`
/// allows a dynamic number of axes.
///
/// The default memory order of an array is *row major* order (a.k.a “c” order),
/// where each row is contiguous in memory.
/// A *column major* (a.k.a. “f” or fortran) memory order array has
/// columns (or, in general, the outermost axis) with contiguous elements.
///
/// The logical order of any array’s elements is the row major order.
/// The iterators `.iter(), .iter_mut()` always adhere to this order, for example.
///
/// ## Slicing
///
/// You can use slicing to create a view of a subset of the data in
/// the array. Slicing methods include `.slice()`, `.islice()`,
/// `.slice_mut()`.
///
/// The slicing argument can be passed using the macro [`s![]`](macro.s!.html),
/// which will be used in all examples. (The explicit form is a reference
/// to a fixed size array of [`Si`]; see its docs for more information.)
/// [`Si`]: struct.Si.html
///
/// ```
/// // import the s![] macro
/// #[macro_use(s)]
/// extern crate ndarray;
///
/// use ndarray::arr3;
///
/// fn main() {
///
/// // 2 submatrices of 2 rows with 3 elements per row, means a shape of `[2, 2, 3]`.
///
/// let a = arr3(&[[[ 1,  2,  3],     // -- 2 rows  \_
///                 [ 4,  5,  6]],    // --         /
///                [[ 7,  8,  9],     //            \_ 2 submatrices
///                 [10, 11, 12]]]);  //            /
/// //  3 columns ..../.../.../
///
/// assert_eq!(a.shape(), &[2, 2, 3]);
///
/// // Let’s create a slice with
/// //
/// // - Both of the submatrices of the greatest dimension: `..`
/// // - Only the first row in each submatrix: `0..1`
/// // - Every element in each row: `..`
///
/// let b = a.slice(s![.., 0..1, ..]);
/// // without the macro, the explicit argument is `&[S, Si(0, Some(1), 1), S]`
///
/// let c = arr3(&[[[ 1,  2,  3]],
///                [[ 7,  8,  9]]]);
/// assert_eq!(b, c);
/// assert_eq!(b.shape(), &[2, 1, 3]);
///
/// // Let’s create a slice with
/// //
/// // - Both submatrices of the greatest dimension: `..`
/// // - The last row in each submatrix: `-1..`
/// // - Row elements in reverse order: `..;-1`
/// let d = a.slice(s![.., -1.., ..;-1]);
/// let e = arr3(&[[[ 6,  5,  4]],
///                [[12, 11, 10]]]);
/// assert_eq!(d, e);
/// }
/// ```
///
/// ## Subviews
///
/// Subview methods allow you to restrict the array view while removing
/// one axis from the array. Subview methods include `.subview()`,
/// `.isubview()`, `.subview_mut()`.
///
/// Subview takes two arguments: `axis` and `index`.
///
/// ```
/// use ndarray::{arr3, aview2, Axis};
///
/// // 2 submatrices of 2 rows with 3 elements per row, means a shape of `[2, 2, 3]`.
///
/// let a = arr3(&[[[ 1,  2,  3],    // \ axis 0, submatrix 0
///                 [ 4,  5,  6]],   // /
///                [[ 7,  8,  9],    // \ axis 0, submatrix 1
///                 [10, 11, 12]]]); // /
///         //        \
///         //         axis 2, column 0
///
/// assert_eq!(a.shape(), &[2, 2, 3]);
///
/// // Let’s take a subview along the greatest dimension (axis 0),
/// // taking submatrix 0, then submatrix 1
///
/// let sub_0 = a.subview(Axis(0), 0);
/// let sub_1 = a.subview(Axis(0), 1);
///
/// assert_eq!(sub_0, aview2(&[[ 1,  2,  3],
///                            [ 4,  5,  6]]));
/// assert_eq!(sub_1, aview2(&[[ 7,  8,  9],
///                            [10, 11, 12]]));
/// assert_eq!(sub_0.shape(), &[2, 3]);
///
/// // This is the subview picking only axis 2, column 0
/// let sub_col = a.subview(Axis(2), 0);
///
/// assert_eq!(sub_col, aview2(&[[ 1,  4],
///                              [ 7, 10]]));
/// ```
///
/// `.isubview()` modifies the view in the same way as `subview()`, but
/// since it is *in place*, it cannot remove the collapsed axis. It becomes
/// an axis of length 1.
///
/// `.outer_iter()` is an iterator of every subview along the zeroth (outer)
/// axis, while `.axis_iter()` is an iterator of every subview along a
/// specific axis.
///
/// ## Arithmetic Operations
///
/// Arrays support all arithmetic operations the same way: they apply elementwise.
///
/// Since the trait implementations are hard to overview, here is a summary.
///
/// Let `A` be an array or view of any kind. Let `B` be an array
/// with owned storage (either `Array` or `RcArray`).
/// Let `C` be an array with mutable data (either `Array`, `RcArray`
/// or `ArrayViewMut`).
/// The following combinations of operands
/// are supported for an arbitrary binary operator denoted by `@` (it can be
/// `+`, `-`, `*`, `/` and so on).
///
/// - `&A @ &A` which produces a new `Array`
/// - `B @ A` which consumes `B`, updates it with the result, and returns it
/// - `B @ &A` which consumes `B`, updates it with the result, and returns it
/// - `C @= &A` which performs an arithmetic operation in place
///
/// The trait [`ScalarOperand`](trait.ScalarOperand.html) marks types that can be used in arithmetic
/// with arrays directly. For a scalar `K` the following combinations of operands
/// are supported (scalar can be on either the left or right side, but
/// `ScalarOperand` docs has the detailed condtions).
///
/// - `&A @ K` or `K @ &A` which produces a new `Array`
/// - `B @ K` or `K @ B` which consumes `B`, updates it with the result and returns it
/// - `C @= K` which performs an arithmetic operation in place
///
/// ## Broadcasting
///
/// Arrays support limited *broadcasting*, where arithmetic operations with
/// array operands of different sizes can be carried out by repeating the
/// elements of the smaller dimension array. See
/// [`.broadcast()`](#method.broadcast) for a more detailed
/// description.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 1.],
///                [1., 2.]]);
/// let b = arr2(&[[0., 1.]]);
///
/// let c = arr2(&[[1., 2.],
///                [1., 3.]]);
/// // We can add because the shapes are compatible even if not equal.
/// assert!(
///     c == a + b
/// );
/// ```
///
pub struct ArrayBase<S, D>
    where S: Data
{
    /// Rc data when used as view, Uniquely held data when being mutated
    data: S,
    /// A pointer into the buffer held by data, may point anywhere
    /// in its range.
    ptr: *mut S::Elem,
    /// The size of each axis
    dim: D,
    /// The element count stride per axis. To be parsed as `isize`.
    strides: D,
}

/// Array where the data is reference counted and copy on write, it
/// can act as both an owner as the data as well as a lightweight view.
pub type RcArray<A, D> = ArrayBase<Rc<Vec<A>>, D>;

/// Array where the data is owned uniquely.
pub type Array<A, D> = ArrayBase<Vec<A>, D>;

#[deprecated(note="Use the type alias `Array` instead")]
/// Array where the data is owned uniquely.
pub type OwnedArray<A, D> = ArrayBase<Vec<A>, D>;

/// A lightweight array view.
///
/// An array view represents an array or a part of it, created from
/// an iterator, subview or slice of an array.
///
/// Array views have all the methods of an array (see [`ArrayBase`][ab]).
///
/// See also specific [**Methods for Array Views**](struct.ArrayBase.html#methods-for-array-views).
///
/// [ab]: struct.ArrayBase.html
pub type ArrayView<'a, A, D> = ArrayBase<ViewRepr<&'a A>, D>;
/// A lightweight read-write array view.
///
/// An array view represents an array or a part of it, created from
/// an iterator, subview or slice of an array.
///
/// Array views have all the methods of an array (see [`ArrayBase`][ab]).
///
/// See also specific [**Methods for Array Views**](struct.ArrayBase.html#methods-for-array-views).
///
/// [ab]: struct.ArrayBase.html
pub type ArrayViewMut<'a, A, D> = ArrayBase<ViewRepr<&'a mut A>, D>;

/// Array view’s representation.
#[derive(Copy, Clone)]
// This is just a marker type, to carry the lifetime parameter.
pub struct ViewRepr<A> {
    life: PhantomData<A>,
}

impl<A> ViewRepr<A> {
    #[inline(always)]
    fn new() -> Self {
        ViewRepr { life: PhantomData }
    }
}

mod impl_clone;

mod impl_constructors;

mod impl_methods;
mod impl_owned_array;

/// Private Methods
impl<A, S, D> ArrayBase<S, D>
    where S: Data<Elem=A>, D: Dimension
{
    #[inline]
    fn broadcast_unwrap<E>(&self, dim: E) -> ArrayView<A, E>
        where E: Dimension,
    {
        #[cold]
        #[inline(never)]
        fn broadcast_panic<D, E>(from: &D, to: &E) -> !
            where D: Dimension,
                  E: Dimension,
        {
            panic!("ndarray: could not broadcast array from shape: {:?} to: {:?}",
                   from.slice(), to.slice())
        }

        match self.broadcast(dim.clone()) {
            Some(it) => it,
            None => broadcast_panic(&self.dim, &dim),
        }
    }


    /// Apply closure `f` to each element in the array, in whatever
    /// order is the fastest to visit.
    fn unordered_foreach_mut<F>(&mut self, mut f: F)
        where S: DataMut,
              F: FnMut(&mut A)
    {
        if let Some(slc) = self.as_slice_memory_order_mut() {
            // FIXME: Use for loop when slice iterator is perf is restored
            for i in 0..slc.len() {
                f(&mut slc[i]);
            }
            return;
        }
        for row in self.inner_iter_mut() {
            row.into_iter_().fold((), |(), elt| f(elt));
        }
    }
}


mod impl_2d;

mod numeric;

pub mod linalg;

mod impl_ops;
pub use impl_ops::ScalarOperand;

// Array view methods
mod impl_views;

/// Private array view methods
impl<'a, A, D> ArrayBase<ViewRepr<&'a A>, D>
    where D: Dimension,
{
    /// Create a new `ArrayView`
    ///
    /// Unsafe because: `ptr` must be valid for the given dimension and strides.
    #[inline(always)]
    unsafe fn new_(ptr: *const A, dim: D, strides: D) -> Self {
        ArrayView {
            data: ViewRepr::new(),
            ptr: ptr as *mut A,
            dim: dim,
            strides: strides,
        }
    }

    #[inline]
    fn into_base_iter(self) -> Baseiter<'a, A, D> {
        unsafe {
            Baseiter::new(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    #[inline]
    fn into_elements_base(self) -> ElementsBase<'a, A, D> {
        ElementsBase { inner: self.into_base_iter() }
    }

    fn into_iter_(self) -> Elements<'a, A, D> {
        Elements {
            inner: if let Some(slc) = self.into_slice() {
                ElementsRepr::Slice(slc.iter())
            } else {
                ElementsRepr::Counted(self.into_elements_base())
            },
        }
    }

    fn into_slice(&self) -> Option<&'a [A]> {
        if self.is_standard_layout() {
            unsafe {
                Some(slice::from_raw_parts(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return an outer iterator for this view.
    #[doc(hidden)] // not official
    #[deprecated(note="This method will be replaced.")]
    pub fn into_outer_iter(self) -> AxisIter<'a, A, D::Smaller>
        where D: RemoveAxis,
    {
        iterators::new_outer_iter(self)
    }

}

impl<'a, A, D> ArrayBase<ViewRepr<&'a mut A>, D>
    where D: Dimension,
{
    /// Create a new `ArrayView`
    ///
    /// Unsafe because: `ptr` must be valid for the given dimension and strides.
    #[inline(always)]
    unsafe fn new_(ptr: *mut A, dim: D, strides: D) -> Self {
        ArrayViewMut {
            data: ViewRepr::new(),
            ptr: ptr,
            dim: dim,
            strides: strides,
        }
    }

    #[inline]
    fn into_base_iter(self) -> Baseiter<'a, A, D> {
        unsafe {
            Baseiter::new(self.ptr, self.dim.clone(), self.strides.clone())
        }
    }

    #[inline]
    fn into_elements_base(self) -> ElementsBaseMut<'a, A, D> {
        ElementsBaseMut { inner: self.into_base_iter() }
    }

    fn into_iter_(self) -> ElementsMut<'a, A, D> {
        ElementsMut {
            inner:
                if self.is_standard_layout() {
                    let slc = unsafe {
                        slice::from_raw_parts_mut(self.ptr, self.len())
                    };
                    ElementsRepr::Slice(slc.iter_mut())
                } else {
                    ElementsRepr::Counted(self.into_elements_base())
                }
        }
    }

    fn _into_slice_mut(self) -> Option<&'a mut [A]>
    {
        if self.is_standard_layout() {
            unsafe {
                Some(slice::from_raw_parts_mut(self.ptr, self.len()))
            }
        } else {
            None
        }
    }

    /// Return an outer iterator for this view.
    #[doc(hidden)] // not official
    #[deprecated(note="This method will be replaced.")]
    pub fn into_outer_iter(self) -> AxisIterMut<'a, A, D::Smaller>
        where D: RemoveAxis,
    {
        iterators::new_outer_iter_mut(self)
    }
}


/// An iterator over the elements of an array.
///
/// Iterator element type is `&'a A`.
///
/// See [`.iter()`](struct.ArrayBase.html#method.iter) for more information.
pub struct Elements<'a, A: 'a, D> {
    inner: ElementsRepr<Iter<'a, A>, ElementsBase<'a, A, D>>,
}

/// Counted read only iterator
struct ElementsBase<'a, A: 'a, D> {
    inner: Baseiter<'a, A, D>,
}

/// An iterator over the elements of an array (mutable).
///
/// Iterator element type is `&'a mut A`.
///
/// See [`.iter_mut()`](struct.ArrayBase.html#method.iter_mut) for more information.
pub struct ElementsMut<'a, A: 'a, D> {
    inner: ElementsRepr<IterMut<'a, A>, ElementsBaseMut<'a, A, D>>,
}

/// An iterator over the elements of an array.
///
/// Iterator element type is `&'a mut A`.
struct ElementsBaseMut<'a, A: 'a, D> {
    inner: Baseiter<'a, A, D>,
}

/// An iterator over the indexes and elements of an array.
///
/// See [`.indexed_iter()`](struct.ArrayBase.html#method.indexed_iter) for more information.
#[derive(Clone)]
pub struct Indexed<'a, A: 'a, D>(ElementsBase<'a, A, D>);
/// An iterator over the indexes and elements of an array (mutable).
///
/// See [`.indexed_iter_mut()`](struct.ArrayBase.html#method.indexed_iter_mut) for more information.
pub struct IndexedMut<'a, A: 'a, D>(ElementsBaseMut<'a, A, D>);

use std::slice::Iter as SliceIter;
use std::slice::IterMut as SliceIterMut;
use std::iter::Zip;
fn zipsl<'a, 'b, A, B>(t: &'a [A], u: &'b [B])
    -> Zip<SliceIter<'a, A>, SliceIter<'b, B>> {
    t.iter().zip(u)
}
fn zipsl_mut<'a, 'b, A, B>(t: &'a mut [A], u: &'b mut [B])
    -> Zip<SliceIterMut<'a, A>, SliceIterMut<'b, B>> {
    t.iter_mut().zip(u)
}

use itertools::{cons_tuples, ConsTuples};

trait ZipExt : Iterator {
    fn zip_cons<J>(self, iter: J) -> ConsTuples<Zip<Self, J::IntoIter>, (Self::Item, J::Item)>
        where J: IntoIterator,
              Self: Sized,
    {
        cons_tuples(self.zip(iter))
    }
}

impl<I> ZipExt for I where I: Iterator { }

enum ElementsRepr<S, C> {
    Slice(S),
    Counted(C),
}


/// A contiguous array shape of n dimensions.
///
/// Either c- or f- memory ordered (*c* a.k.a *row major* is the default).
#[derive(Copy, Clone, Debug)]
pub struct Shape<D> {
    dim: D,
    is_c: bool,
}

/// An array shape of n dimensions c-order, f-order or custom strides.
#[derive(Copy, Clone, Debug)]
pub struct StrideShape<D> {
    dim: D,
    strides: D,
    custom: bool,
}