1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::ops::Add;
use libnum::{self, Zero, Float};
use itertools::free::enumerate;

use imp_prelude::*;
use numeric_util;

use {
    LinalgScalar,
};

/// Numerical methods for arrays.
impl<A, S, D> ArrayBase<S, D>
    where S: Data<Elem=A>,
          D: Dimension,
{
    /// Return the sum of all elements in the array.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[1., 2.],
    ///                [3., 4.]]);
    /// assert_eq!(a.scalar_sum(), 10.);
    /// ```
    pub fn scalar_sum(&self) -> A
        where A: Clone + Add<Output=A> + libnum::Zero,
    {
        if let Some(slc) = self.as_slice_memory_order() {
            return numeric_util::unrolled_sum(slc);
        }
        let mut sum = A::zero();
        for row in self.inner_iter() {
            if let Some(slc) = row.as_slice() {
                sum = sum + numeric_util::unrolled_sum(slc);
            } else {
                sum = sum + row.iter().fold(A::zero(), |acc, elt| acc + elt.clone());
            }
        }
        sum
    }

    /// Return sum along `axis`.
    ///
    /// ```
    /// use ndarray::{aview0, aview1, arr2, Axis};
    ///
    /// let a = arr2(&[[1., 2.],
    ///                [3., 4.]]);
    /// assert!(
    ///     a.sum(Axis(0)) == aview1(&[4., 6.]) &&
    ///     a.sum(Axis(1)) == aview1(&[3., 7.]) &&
    ///
    ///     a.sum(Axis(0)).sum(Axis(0)) == aview0(&10.)
    /// );
    /// ```
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn sum(&self, axis: Axis) -> Array<A, <D as RemoveAxis>::Smaller>
        where A: Clone + Zero + Add<Output=A>,
              D: RemoveAxis,
    {
        let n = self.shape().axis(axis);
        let mut res = self.subview(axis, 0).to_owned();
        let stride = self.strides()[axis.axis()];
        if self.ndim() == 2 && stride == 1 {
            // contiguous along the axis we are summing
            let ax = axis.axis();
            for (i, elt) in enumerate(&mut res) {
                *elt = self.subview(Axis(1 - ax), i).scalar_sum();
            }
        } else {
            for i in 1..n {
                let view = self.subview(axis, i);
                res = res + &view;
            }
        }
        res
    }

    /// Return mean along `axis`.
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// ```
    /// use ndarray::{aview1, arr2, Axis};
    ///
    /// let a = arr2(&[[1., 2.],
    ///                [3., 4.]]);
    /// assert!(
    ///     a.mean(Axis(0)) == aview1(&[2.0, 3.0]) &&
    ///     a.mean(Axis(1)) == aview1(&[1.5, 3.5])
    /// );
    /// ```
    pub fn mean(&self, axis: Axis) -> Array<A, <D as RemoveAxis>::Smaller>
        where A: LinalgScalar,
              D: RemoveAxis,
    {
        let n = self.shape().axis(axis);
        let sum = self.sum(axis);
        let mut cnt = A::one();
        for _ in 1..n {
            cnt = cnt + A::one();
        }
        sum / &aview0(&cnt)
    }

    /// Return `true` if the arrays' elementwise differences are all within
    /// the given absolute tolerance, `false` otherwise.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting to the same shape isn’t possible.
    pub fn all_close<S2, E>(&self, rhs: &ArrayBase<S2, E>, tol: A) -> bool
        where A: Float,
              S2: Data<Elem=A>,
              E: Dimension,
    {
        let rhs_broadcast = rhs.broadcast_unwrap(self.dim());
        self.iter().zip(rhs_broadcast.iter()).all(|(x, y)| (*x - *y).abs() <= tol)
    }
}