1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use std::ops::Add;
use libnum::{self, Zero, Float};
use itertools::free::enumerate;
use imp_prelude::*;
use numeric_util;
use {
LinalgScalar,
};
impl<A, S, D> ArrayBase<S, D>
where S: Data<Elem=A>,
D: Dimension,
{
pub fn scalar_sum(&self) -> A
where A: Clone + Add<Output=A> + libnum::Zero,
{
if let Some(slc) = self.as_slice_memory_order() {
return numeric_util::unrolled_sum(slc);
}
let mut sum = A::zero();
for row in self.inner_iter() {
if let Some(slc) = row.as_slice() {
sum = sum + numeric_util::unrolled_sum(slc);
} else {
sum = sum + row.iter().fold(A::zero(), |acc, elt| acc + elt.clone());
}
}
sum
}
pub fn sum(&self, axis: Axis) -> Array<A, <D as RemoveAxis>::Smaller>
where A: Clone + Zero + Add<Output=A>,
D: RemoveAxis,
{
let n = self.shape().axis(axis);
let mut res = self.subview(axis, 0).to_owned();
let stride = self.strides()[axis.axis()];
if self.ndim() == 2 && stride == 1 {
let ax = axis.axis();
for (i, elt) in enumerate(&mut res) {
*elt = self.subview(Axis(1 - ax), i).scalar_sum();
}
} else {
for i in 1..n {
let view = self.subview(axis, i);
res = res + &view;
}
}
res
}
pub fn mean(&self, axis: Axis) -> Array<A, <D as RemoveAxis>::Smaller>
where A: LinalgScalar,
D: RemoveAxis,
{
let n = self.shape().axis(axis);
let sum = self.sum(axis);
let mut cnt = A::one();
for _ in 1..n {
cnt = cnt + A::one();
}
sum / &aview0(&cnt)
}
pub fn all_close<S2, E>(&self, rhs: &ArrayBase<S2, E>, tol: A) -> bool
where A: Float,
S2: Data<Elem=A>,
E: Dimension,
{
let rhs_broadcast = rhs.broadcast_unwrap(self.dim());
self.iter().zip(rhs_broadcast.iter()).all(|(x, y)| (*x - *y).abs() <= tol)
}
}