1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::ops::{Range, RangeFrom, RangeTo, RangeFull};
use super::Ixs;

// [a:b:s] syntax for example [:3], [::-1]
// [0,:] -- first row of matrix
// [:,0] -- first column of matrix

#[derive(Copy, PartialEq, Eq, Hash, Debug)]
/// A slice, a description of a range of an array axis.
///
/// Fields are `begin`, `end` and `stride`, where
/// negative `begin` or `end` indexes are counted from the back
/// of the axis.
///
/// If `end` is `None`, the slice extends to the end of the axis.
///
/// See also the [`s![] macro`](macro.s!.html), a convenient way to specify
/// an array of `Si`.
///
/// ## Examples
///
/// `Si(0, None, 1)` is the full range of an axis.
/// Python equivalent is `[:]`. Macro equivalent is `s![..]`.
///
/// `Si(a, Some(b), 2)` is every second element from `a` until `b`.
/// Python equivalent is `[a:b:2]`. Macro equivalent is `s![a..b;2]`.
///
/// `Si(a, None, -1)` is every element, from `a`
/// until the end, in reverse order. Python equivalent is `[a::-1]`.
/// Macro equivalent is `s![a..;-1]`.
///
/// The constant [`S`] is a shorthand for the full range of an axis.
/// [`S`]: constant.S.html
pub struct Si(pub Ixs, pub Option<Ixs>, pub Ixs);

impl From<Range<Ixs>> for Si {
    #[inline]
    fn from(r: Range<Ixs>) -> Si {
        Si(r.start, Some(r.end), 1)
    }
}

impl From<RangeFrom<Ixs>> for Si {
    #[inline]
    fn from(r: RangeFrom<Ixs>) -> Si {
        Si(r.start, None, 1)
    }
}

impl From<RangeTo<Ixs>> for Si {
    #[inline]
    fn from(r: RangeTo<Ixs>) -> Si {
        Si(0, Some(r.end), 1)
    }
}

impl From<RangeFull> for Si {
    #[inline]
    fn from(_: RangeFull) -> Si {
        S
    }
}


impl Si {
    #[inline]
    pub fn step(self, step: Ixs) -> Self {
        Si(self.0, self.1, self.2 * step)
    }
}

impl Clone for Si {
    #[inline]
    fn clone(&self) -> Self {
        *self
    }
}

/// Slice value for the full range of an axis.
pub const S: Si = Si(0, None, 1);

/// Slice argument constructor.
///
/// `s![]` takes a list of ranges, separated by comma, with optional strides
/// that are separated from the range by a semicolon.
/// It is converted into a slice argument with type `&[Si; N]`.
///
/// Each range uses signed indices, where a negative value is counted from
/// the end of the axis. Strides are also signed and may be negative, but
/// must not be zero.
///
/// For example `s![0..4;2, 1..5]` is a slice of rows 0..4 with step size 2,
/// and columns 1..5 with default step size 1. The slice would have
/// shape `[2, 4]`.
///
/// If an array has two axes, the slice argument is passed as
/// type `&[Si; 2]`.  The macro expansion of `s![a..b;c, d..e]`
/// is equivalent to `&[Si(a, Some(b), c), Si(d, Some(e), 1)]`.
///
/// ```
/// #[macro_use]
/// extern crate ndarray;
///
/// use ndarray::{
///     ArrayView,
///     Ix,
///     Array,
/// };
///
/// fn laplacian(v: &ArrayView<f32, (Ix, Ix)>) -> Array<f32, (Ix, Ix)> {
///     -4. * &v.slice(s![1..-1, 1..-1])
///     + v.slice(s![ ..-2, 1..-1])
///     + v.slice(s![1..-1,  ..-2])
///     + v.slice(s![1..-1, 2..  ])
///     + v.slice(s![2..  , 1..-1])
/// }
/// # fn main() { }
/// ```
#[macro_export]
macro_rules! s(
    (@as_expr $e:expr) => ($e);
    // convert a..b;c into @step(a..b, c), final item
    (@parse [$($stack:tt)*] $r:expr;$s:expr) => {
        s![@as_expr &[$($stack)* s!(@step $r, $s)]]
    };
    // convert a..b into @step(a..b, 1), final item
    (@parse [$($stack:tt)*] $r:expr) => {
        s![@as_expr &[$($stack)* s!(@step $r, 1)]]
    };
    // convert a..b;c into @step(a..b, c)
    (@parse [$($stack:tt)*] $r:expr;$s:expr, $($t:tt)*) => {
        s![@parse [$($stack)* s!(@step $r, $s),] $($t)*]
    };
    // convert a..b into @step(a..b, 1)
    (@parse [$($stack:tt)*] $r:expr, $($t:tt)*) => {
        s![@parse [$($stack)* s!(@step $r, 1),] $($t)*]
    };
    // convert range, step into Si
    (@step $r:expr, $s:expr) => {
        <$crate::Si as ::std::convert::From<_>>::from($r).step($s)
    };
    ($($t:tt)*) => {
        s![@parse [] $($t)*]
    };
);