Trait linxal::solve_linear::symmetric::SymmetricSolveLinear
[−]
[src]
pub trait SymmetricSolveLinear: Sized + Clone { fn compute_multi_into<D1, D2>(a: ArrayBase<D1, Ix2>, uplo: Symmetric, b: ArrayBase<D2, Ix2>) -> Result<ArrayBase<D2, Ix2>, SolveError> where D1: DataMut<Elem=Self> + DataOwned<Elem=Self>, D2: DataMut<Elem=Self> + DataOwned<Elem=Self>; fn compute_into<D1, D2>(a: ArrayBase<D1, Ix2>, uplo: Symmetric, b: ArrayBase<D2, Ix1>) -> Result<ArrayBase<D2, Ix1>, SolveError> where D1: DataMut<Elem=Self> + DataOwned<Elem=Self>, D2: DataMut<Elem=Self> + DataOwned<Elem=Self> { ... } fn compute_multi<D1, D2>(a: &ArrayBase<D1, Ix2>, uplo: Symmetric, b: &ArrayBase<D2, Ix2>) -> Result<Array<Self, Ix2>, SolveError> where D1: Data<Elem=Self>, D2: Data<Elem=Self> { ... } fn compute<D1, D2>(a: &ArrayBase<D1, Ix2>, uplo: Symmetric, b: &ArrayBase<D2, Ix1>) -> Result<Array<Self, Ix1>, SolveError> where D1: Data<Elem=Self>, D2: Data<Elem=Self> { ... } }
Implements compute_*
methods to solve systems of linear
equations A*X = B, where A is symmetric (for real-valued matrices)
or hermitian (for complex-valued matrices).
Required Methods
fn compute_multi_into<D1, D2>(a: ArrayBase<D1, Ix2>, uplo: Symmetric, b: ArrayBase<D2, Ix2>) -> Result<ArrayBase<D2, Ix2>, SolveError> where D1: DataMut<Elem=Self> + DataOwned<Elem=Self>, D2: DataMut<Elem=Self> + DataOwned<Elem=Self>
Solve the linear system A * x = B for symmetric/hermitian
square matrix a
and rectangular matrix b
.
Provided Methods
fn compute_into<D1, D2>(a: ArrayBase<D1, Ix2>, uplo: Symmetric, b: ArrayBase<D2, Ix1>) -> Result<ArrayBase<D2, Ix1>, SolveError> where D1: DataMut<Elem=Self> + DataOwned<Elem=Self>, D2: DataMut<Elem=Self> + DataOwned<Elem=Self>
Solve the linear system A * x = b for symmetric/hermitian
square matrix a
and column vector b
.
fn compute_multi<D1, D2>(a: &ArrayBase<D1, Ix2>, uplo: Symmetric, b: &ArrayBase<D2, Ix2>) -> Result<Array<Self, Ix2>, SolveError> where D1: Data<Elem=Self>, D2: Data<Elem=Self>
Solve the linear system A * x = B for symmetric/hermitian
square matrix a
and rectangular matrix b
.
fn compute<D1, D2>(a: &ArrayBase<D1, Ix2>, uplo: Symmetric, b: &ArrayBase<D2, Ix1>) -> Result<Array<Self, Ix1>, SolveError> where D1: Data<Elem=Self>, D2: Data<Elem=Self>
Solve the linear system A * x = b for symmetric/hermitian
square matrix a
and column vector b
.