Trait linxal::solve_linear::symmetric::SymmetricSolveLinear [] [src]

pub trait SymmetricSolveLinear: Sized + Clone {
    fn compute_multi_into<D1, D2>(a: ArrayBase<D1, Ix2>, uplo: Symmetric, b: ArrayBase<D2, Ix2>) -> Result<ArrayBase<D2, Ix2>, SolveError> where D1: DataMut<Elem=Self> + DataOwned<Elem=Self>, D2: DataMut<Elem=Self> + DataOwned<Elem=Self>;

    fn compute_into<D1, D2>(a: ArrayBase<D1, Ix2>, uplo: Symmetric, b: ArrayBase<D2, Ix1>) -> Result<ArrayBase<D2, Ix1>, SolveError> where D1: DataMut<Elem=Self> + DataOwned<Elem=Self>, D2: DataMut<Elem=Self> + DataOwned<Elem=Self> { ... }
    fn compute_multi<D1, D2>(a: &ArrayBase<D1, Ix2>, uplo: Symmetric, b: &ArrayBase<D2, Ix2>) -> Result<Array<Self, Ix2>, SolveError> where D1: Data<Elem=Self>, D2: Data<Elem=Self> { ... }
    fn compute<D1, D2>(a: &ArrayBase<D1, Ix2>, uplo: Symmetric, b: &ArrayBase<D2, Ix1>) -> Result<Array<Self, Ix1>, SolveError> where D1: Data<Elem=Self>, D2: Data<Elem=Self> { ... }
}

Implements compute_* methods to solve systems of linear equations A*X = B, where A is symmetric (for real-valued matrices) or hermitian (for complex-valued matrices).

Required Methods

Solve the linear system A * x = B for symmetric/hermitian square matrix a and rectangular matrix b.

Provided Methods

Solve the linear system A * x = b for symmetric/hermitian square matrix a and column vector b.

Solve the linear system A * x = B for symmetric/hermitian square matrix a and rectangular matrix b.

Solve the linear system A * x = b for symmetric/hermitian square matrix a and column vector b.

Implementors