Struct ndarray::ArrayBase
[−]
[src]
pub struct ArrayBase<S, D> where S: Data { /* fields omitted */ }
An N-dimensional array.
The array is a general container of elements. It cannot grow or shrink, but can be sliced into subsets of its data. The array supports arithmetic operations by applying them elementwise.
The ArrayBase<S, D>
is parameterized by S
for the data container and
D
for the dimensionality.
Type aliases Array
, RcArray
, ArrayView
, and ArrayViewMut
refer
to ArrayBase
with different types for the data container.
Contents
- Array and RcArray
- Indexing and Dimension
- Slicing
- Subviews
- Arithmetic Operations
- Broadcasting
- Methods
- Methods for Array Views
Array
and RcArray
Array
owns the underlying array elements directly (just like
a Vec
), while RcArray
is a an array with reference
counted data. RcArray
can act both as an owner or as a view in that regard.
Sharing requires that it uses copy-on-write for mutable operations.
Calling a method for mutating elements on RcArray
, for example
view_mut()
or get_mut()
,
will break sharing and require a clone of the data (if it is not uniquely held).
Note that all ArrayBase
variants can change their view (slicing) of the
data freely, even when their data can’t be mutated.
Indexing and Dimension
Array indexes are represented by the types Ix
and Ixs
(signed).
The dimensionality of the array determines the number of axes, for example a 2D array has two axes. These are listed in “big endian” order, so that the greatest dimension is listed first, the lowest dimension with the most rapidly varying index is the last.
In a 2D array the index of each element is (row, column)
as seen in this 3 × 3 example:
[[ (0, 0), (0, 1), (0, 2)], // row 0 [ (1, 0), (1, 1), (1, 2)], // row 1 [ (2, 0), (2, 1), (2, 2)]] // row 2 // \ \ \ // column 0 \ column 2 // column 1Run
The number of axes for an array is fixed by the D
parameter: Ix
for
a 1D array, (Ix, Ix)
for a 2D array etc. The D
type is also used
for element indices in .get()
and array[index]
. The dimension type Vec<Ix>
allows a dynamic number of axes.
The default memory order of an array is row major order (a.k.a “c” order), where each row is contiguous in memory. A column major (a.k.a. “f” or fortran) memory order array has columns (or, in general, the outermost axis) with contiguous elements.
The logical order of any array’s elements is the row major order.
The iterators .iter(), .iter_mut()
always adhere to this order, for example.
Slicing
You can use slicing to create a view of a subset of the data in
the array. Slicing methods include .slice()
, .islice()
,
.slice_mut()
.
The slicing argument can be passed using the macro s![]
,
which will be used in all examples. (The explicit form is a reference
to a fixed size array of Si
; see its docs for more information.)
// import the s![] macro #[macro_use(s)] extern crate ndarray; use ndarray::arr3; fn main() { // 2 submatrices of 2 rows with 3 elements per row, means a shape of `[2, 2, 3]`. let a = arr3(&[[[ 1, 2, 3], // -- 2 rows \_ [ 4, 5, 6]], // -- / [[ 7, 8, 9], // \_ 2 submatrices [10, 11, 12]]]); // / // 3 columns ..../.../.../ assert_eq!(a.shape(), &[2, 2, 3]); // Let’s create a slice with // // - Both of the submatrices of the greatest dimension: `..` // - Only the first row in each submatrix: `0..1` // - Every element in each row: `..` let b = a.slice(s![.., 0..1, ..]); // without the macro, the explicit argument is `&[S, Si(0, Some(1), 1), S]` let c = arr3(&[[[ 1, 2, 3]], [[ 7, 8, 9]]]); assert_eq!(b, c); assert_eq!(b.shape(), &[2, 1, 3]); // Let’s create a slice with // // - Both submatrices of the greatest dimension: `..` // - The last row in each submatrix: `-1..` // - Row elements in reverse order: `..;-1` let d = a.slice(s![.., -1.., ..;-1]); let e = arr3(&[[[ 6, 5, 4]], [[12, 11, 10]]]); assert_eq!(d, e); }Run
Subviews
Subview methods allow you to restrict the array view while removing
one axis from the array. Subview methods include .subview()
,
.isubview()
, .subview_mut()
.
Subview takes two arguments: axis
and index
.
use ndarray::{arr3, aview2, Axis}; // 2 submatrices of 2 rows with 3 elements per row, means a shape of `[2, 2, 3]`. let a = arr3(&[[[ 1, 2, 3], // \ axis 0, submatrix 0 [ 4, 5, 6]], // / [[ 7, 8, 9], // \ axis 0, submatrix 1 [10, 11, 12]]]); // / // \ // axis 2, column 0 assert_eq!(a.shape(), &[2, 2, 3]); // Let’s take a subview along the greatest dimension (axis 0), // taking submatrix 0, then submatrix 1 let sub_0 = a.subview(Axis(0), 0); let sub_1 = a.subview(Axis(0), 1); assert_eq!(sub_0, aview2(&[[ 1, 2, 3], [ 4, 5, 6]])); assert_eq!(sub_1, aview2(&[[ 7, 8, 9], [10, 11, 12]])); assert_eq!(sub_0.shape(), &[2, 3]); // This is the subview picking only axis 2, column 0 let sub_col = a.subview(Axis(2), 0); assert_eq!(sub_col, aview2(&[[ 1, 4], [ 7, 10]]));Run
.isubview()
modifies the view in the same way as subview()
, but
since it is in place, it cannot remove the collapsed axis. It becomes
an axis of length 1.
.outer_iter()
is an iterator of every subview along the zeroth (outer)
axis, while .axis_iter()
is an iterator of every subview along a
specific axis.
Arithmetic Operations
Arrays support all arithmetic operations the same way: they apply elementwise.
Since the trait implementations are hard to overview, here is a summary.
Let A
be an array or view of any kind. Let B
be an array
with owned storage (either Array
or RcArray
).
Let C
be an array with mutable data (either Array
, RcArray
or ArrayViewMut
).
The following combinations of operands
are supported for an arbitrary binary operator denoted by @
(it can be
+
, -
, *
, /
and so on).
&A @ &A
which produces a newArray
B @ A
which consumesB
, updates it with the result, and returns itB @ &A
which consumesB
, updates it with the result, and returns itC @= &A
which performs an arithmetic operation in place
The trait ScalarOperand
marks types that can be used in arithmetic
with arrays directly. For a scalar K
the following combinations of operands
are supported (scalar can be on either the left or right side, but
ScalarOperand
docs has the detailed condtions).
&A @ K
orK @ &A
which produces a newArray
B @ K
orK @ B
which consumesB
, updates it with the result and returns itC @= K
which performs an arithmetic operation in place
Broadcasting
Arrays support limited broadcasting, where arithmetic operations with
array operands of different sizes can be carried out by repeating the
elements of the smaller dimension array. See
.broadcast()
for a more detailed
description.
use ndarray::arr2; let a = arr2(&[[1., 1.], [1., 2.]]); let b = arr2(&[[0., 1.]]); let c = arr2(&[[1., 2.], [1., 3.]]); // We can add because the shapes are compatible even if not equal. assert!( c == a + b );Run
Methods
impl<S> ArrayBase<S, Ix1> where S: DataOwned
[src]
Constructor methods for one-dimensional arrays.
Note that the constructor methods apply to Array
and RcArray
,
the two array types that have owned storage.
fn from_vec(v: Vec<S::Elem>) -> Self
Create a one-dimensional array from a vector (no copying needed).
use ndarray::Array; let array = Array::from_vec(vec![1., 2., 3., 4.]);Run
fn from_iter<I>(iterable: I) -> Self where I: IntoIterator<Item=S::Elem>
Create a one-dimensional array from an iterable.
use ndarray::{Array, arr1}; let array = Array::from_iter((0..5).map(|x| x * x)); assert!(array == arr1(&[0, 1, 4, 9, 16]))Run
fn linspace<F>(start: F, end: F, n: usize) -> Self where S: Data<Elem=F>, F: Float
Create a one-dimensional array from the inclusive interval
[start, end]
with n
elements. F
must be a floating point type.
use ndarray::{Array, arr1}; let array = Array::linspace(0., 1., 5); assert!(array == arr1(&[0.0, 0.25, 0.5, 0.75, 1.0]))Run
fn range<F>(start: F, end: F, step: F) -> Self where S: Data<Elem=F>, F: Float
Create a one-dimensional array from the half-open interval
[start, end)
with elements spaced by step
. F
must be a floating point type.
use ndarray::{Array, arr1}; let array = Array::range(0., 5., 1.); assert!(array == arr1(&[0., 1., 2., 3., 4.]))Run
impl<S, A> ArrayBase<S, Ix2> where S: DataOwned<Elem=A>
[src]
Constructor methods for two-dimensional arrays.
fn eye(n: Ix) -> Self where S: DataMut, A: Clone + Zero + One
Create an identity matrix of size n
(square 2D array).
Panics if n * n
would overflow usize.
impl<S, A, D> ArrayBase<S, D> where S: DataOwned<Elem=A>, D: Dimension
[src]
Constructor methods for n-dimensional arrays.
fn from_elem<Sh>(shape: Sh, elem: A) -> Self where A: Clone, Sh: Into<Shape<D>>
Create an array with copies of elem
, shape shape
.
Panics if the number of elements in shape
would overflow usize.
use ndarray::{Array, arr3, ShapeBuilder}; let a = Array::from_elem((2, 2, 2), 1.); assert!( a == arr3(&[[[1., 1.], [1., 1.]], [[1., 1.], [1., 1.]]]) ); assert!(a.strides() == &[4, 2, 1]); let b = Array::from_elem((2, 2, 2).f(), 1.); assert!(b.strides() == &[1, 2, 4]);Run
fn zeros<Sh>(shape: Sh) -> Self where A: Clone + Zero, Sh: Into<Shape<D>>
Create an array with zeros, shape shape
.
Panics if the number of elements in shape
would overflow usize.
fn default<Sh>(shape: Sh) -> Self where A: Default, Sh: Into<Shape<D>>
Create an array with default values, shape shape
Panics if the number of elements in shape
would overflow usize.
fn from_shape_fn<Sh, F>(shape: Sh, f: F) -> Self where Sh: Into<Shape<D>>, F: FnMut(D) -> A
Create an array with values created by the function f
.
The elements are visited in arbitirary order.
Panics if the number of elements in shape
would overflow usize.
fn from_shape_vec<Sh>(shape: Sh, v: Vec<A>) -> Result<Self, ShapeError> where Sh: Into<StrideShape<D>>
Create an array with the given shape from a vector. (No cloning of elements needed.)
For a contiguous c- or f-order shape, the following applies:
Errors if shape
does not correspond to the number of elements in v
.
For custom strides, the following applies:
Errors if strides and dimensions can point out of bounds of v
.
Errors if strides allow multiple indices to point to the same element.
use ndarray::prelude::*; let a = Array::from_shape_vec((2, 2), vec![1., 2., 3., 4.]); assert!(a.is_ok()); let b = Array::from_shape_vec((2, 2).strides((1, 2)), vec![1., 2., 3., 4.]).unwrap(); assert!( b == arr2(&[[1., 3.], [2., 4.]]) );Run
unsafe fn from_shape_vec_unchecked<Sh>(shape: Sh, v: Vec<A>) -> Self where Sh: Into<StrideShape<D>>
Create an array from a vector and interpret it according to the provided dimensions and strides. (No cloning of elements needed.)
Unsafe because dimension and strides are unchecked.
impl<A, S, D> ArrayBase<S, D> where S: Data<Elem=A>, D: Dimension
[src]
fn len(&self) -> usize
Return the total number of elements in the array.
fn dim(&self) -> D
Return the shape of the array.
fn shape(&self) -> &[Ix]
Return the shape of the array as a slice.
fn strides(&self) -> &[Ixs]
Return the strides of the array
fn ndim(&self) -> usize
Return the number of dimensions (axes) in the array
fn view(&self) -> ArrayView<A, D>
Return a read-only view of the array
fn view_mut(&mut self) -> ArrayViewMut<A, D> where S: DataMut
Return a read-write view of the array
fn to_owned(&self) -> Array<A, D> where A: Clone
Return an uniquely owned copy of the array
Return a shared ownership (copy on write) array.
Turn the array into a shared ownership (copy on write) array, without any copying.
fn iter(&self) -> Elements<A, D>
Return an iterator of references to the elements of the array.
Iterator element type is &A
.
fn iter_mut(&mut self) -> ElementsMut<A, D> where S: DataMut
Return an iterator of mutable references to the elements of the array.
Iterator element type is &mut A
.
fn indexed_iter(&self) -> Indexed<A, D>
Return an iterator of indexes and references to the elements of the array.
Iterator element type is (D, &A)
.
fn indexed_iter_mut(&mut self) -> IndexedMut<A, D> where S: DataMut
Return an iterator of indexes and mutable references to the elements of the array.
Iterator element type is (D, &mut A)
.
fn slice(&self, indexes: &D::SliceArg) -> ArrayView<A, D>
Return a sliced array.
See Slicing for full documentation.
See also D::SliceArg
.
Panics if an index is out of bounds or stride is zero.
(Panics if D
is Vec
and indexes
does not match the number of array axes.)
fn slice_mut(&mut self, indexes: &D::SliceArg) -> ArrayViewMut<A, D> where S: DataMut
Return a sliced read-write view of the array.
See also D::SliceArg
.
Panics if an index is out of bounds or stride is zero.
(Panics if D
is Vec
and indexes
does not match the number of array axes.)
fn islice(&mut self, indexes: &D::SliceArg)
Slice the array’s view in place.
See also D::SliceArg
.
Panics if an index is out of bounds or stride is zero.
(Panics if D
is Vec
and indexes
does not match the number of array axes.)
fn get<I>(&self, index: I) -> Option<&A> where I: NdIndex<Dim=D>
Return a reference to the element at index
, or return None
if the index is out of bounds.
Arrays also support indexing syntax: array[index]
.
use ndarray::arr2; let a = arr2(&[[1., 2.], [3., 4.]]); assert!( a.get((0, 1)) == Some(&2.) && a.get((0, 2)) == None && a[(0, 1)] == 2. && a[[0, 1]] == 2. );Run
fn get_mut<I>(&mut self, index: I) -> Option<&mut A> where S: DataMut, I: NdIndex<Dim=D>
Return a mutable reference to the element at index
, or return None
if the index is out of bounds.
unsafe fn uget(&self, index: D) -> &A
Perform unchecked array indexing.
Return a reference to the element at index
.
Note: only unchecked for non-debug builds of ndarray.
unsafe fn uget_mut(&mut self, index: D) -> &mut A where S: DataMut
Perform unchecked array indexing.
Return a mutable reference to the element at index
.
Note: Only unchecked for non-debug builds of ndarray.
Note: The array must be uniquely held when mutating it.
fn swap<I>(&mut self, index1: I, index2: I) where S: DataMut, I: NdIndex<Dim=D>
Swap elements at indices index1
and index2
.
Indices may be equal.
Panics if an index is out of bounds.
fn subview(&self, axis: Axis, index: Ix) -> ArrayView<A, D::Smaller> where D: RemoveAxis
Along axis
, select the subview index
and return a
view with that axis removed.
See Subviews for full documentation.
Panics if axis
or index
is out of bounds.
use ndarray::{arr2, ArrayView, Axis}; let a = arr2(&[[1., 2.], // -- axis 0, row 0 [3., 4.], // -- axis 0, row 1 [5., 6.]]); // -- axis 0, row 2 // \ \ // \ axis 1, column 1 // axis 1, column 0 assert!( a.subview(Axis(0), 1) == ArrayView::from(&[3., 4.]) && a.subview(Axis(1), 1) == ArrayView::from(&[2., 4., 6.]) );Run
fn subview_mut(&mut self, axis: Axis, index: Ix) -> ArrayViewMut<A, D::Smaller> where S: DataMut, D: RemoveAxis
Along axis
, select the subview index
and return a read-write view
with the axis removed.
Panics if axis
or index
is out of bounds.
use ndarray::{arr2, aview2, Axis}; let mut a = arr2(&[[1., 2.], [3., 4.]]); { let mut column1 = a.subview_mut(Axis(1), 1); column1 += 10.; } assert!( a == aview2(&[[1., 12.], [3., 14.]]) );Run
fn isubview(&mut self, axis: Axis, index: Ix)
Collapse dimension axis
into length one,
and select the subview of index
along that axis.
Panics if index
is past the length of the axis.
fn into_subview(self, axis: Axis, index: Ix) -> ArrayBase<S, D::Smaller> where D: RemoveAxis
Along axis
, select the subview index
and return self
with that axis removed.
See .subview()
and Subviews for full documentation.
fn select(&self, axis: Axis, indices: &[Ix]) -> Array<A, D> where A: Copy, D: RemoveAxis
Along axis
, select arbitrary subviews corresponding to indices
and and copy them into a new array.
Panics if axis
or an element of indices
is out of bounds.
use ndarray::{arr2, Axis}; let x = arr2(&[[0., 1.], [2., 3.], [4., 5.], [6., 7.], [8., 9.]]); let r = x.select(Axis(0), &[0, 4, 3]); assert!( r == arr2(&[[0., 1.], [8., 9.], [6., 7.]]) );Run
fn inner_iter(&self) -> InnerIter<A, D>
Return an iterator that traverses over all dimensions but the innermost, and yields each inner row.
For example, in a 2 × 2 × 3 array, the iterator element is a row of 3 elements (and there are 2 × 2 = 4 rows in total).
Iterator element is ArrayView1<A>
(1D array view).
use ndarray::arr3; let a = arr3(&[[[ 0, 1, 2], // -- row 0, 0 [ 3, 4, 5]], // -- row 0, 1 [[ 6, 7, 8], // -- row 1, 0 [ 9, 10, 11]]]); // -- row 1, 1 // `inner_iter` yields the four inner rows of the 3D array. let mut row_sums = a.inner_iter().map(|v| v.scalar_sum()); assert_eq!(row_sums.collect::<Vec<_>>(), vec![3, 12, 21, 30]);Run
fn inner_iter_mut(&mut self) -> InnerIterMut<A, D> where S: DataMut
Return an iterator that traverses over all dimensions but the innermost, and yields each inner row.
Iterator element is ArrayViewMut1<A>
(1D read-write array view).
fn outer_iter(&self) -> AxisIter<A, D::Smaller> where D: RemoveAxis
Return an iterator that traverses over the outermost dimension and yields each subview.
For example, in a 2 × 2 × 3 array, the iterator element is a 2 × 3 subview (and there are 2 in total).
Iterator element is ArrayView<A, D::Smaller>
(read-only array view).
use ndarray::{arr3, Axis}; let a = arr3(&[[[ 0, 1, 2], // \ axis 0, submatrix 0 [ 3, 4, 5]], // / [[ 6, 7, 8], // \ axis 0, submatrix 1 [ 9, 10, 11]]]); // / // `outer_iter` yields the two submatrices along axis 0. let mut iter = a.outer_iter(); assert_eq!(iter.next().unwrap(), a.subview(Axis(0), 0)); assert_eq!(iter.next().unwrap(), a.subview(Axis(0), 1));Run
fn outer_iter_mut(&mut self) -> AxisIterMut<A, D::Smaller> where S: DataMut, D: RemoveAxis
Return an iterator that traverses over the outermost dimension and yields each subview.
Iterator element is ArrayViewMut<A, D::Smaller>
(read-write array view).
fn axis_iter(&self, axis: Axis) -> AxisIter<A, D::Smaller> where D: RemoveAxis
Return an iterator that traverses over axis
and yields each subview along it.
For example, in a 3 × 5 × 5 array, with axis
equal to Axis(2)
,
the iterator element
is a 3 × 5 subview (and there are 5 in total), as shown
in the picture below.
Iterator element is ArrayView<A, D::Smaller>
(read-only array view).
See Subviews for full documentation.
Panics if axis
is out of bounds.
fn axis_iter_mut(&mut self, axis: Axis) -> AxisIterMut<A, D::Smaller> where S: DataMut, D: RemoveAxis
Return an iterator that traverses over axis
and yields each mutable subview along it.
Iterator element is ArrayViewMut<A, D::Smaller>
(read-write array view).
Panics if axis
is out of bounds.
fn axis_chunks_iter(&self, axis: Axis, size: usize) -> AxisChunksIter<A, D>
Return an iterator that traverses over axis
by chunks of size
,
yielding non-overlapping views along that axis.
Iterator element is ArrayView<A, D>
The last view may have less elements if size
does not divide
the axis' dimension.
Panics if axis
is out of bounds.
use ndarray::Array; use ndarray::{arr3, Axis}; let a = Array::from_iter(0..28).into_shape((2, 7, 2)).unwrap(); let mut iter = a.axis_chunks_iter(Axis(1), 2); // first iteration yields a 2 × 2 × 2 view assert_eq!(iter.next().unwrap(), arr3(&[[[ 0, 1], [ 2, 3]], [[14, 15], [16, 17]]])); // however the last element is a 2 × 1 × 2 view since 7 % 2 == 1 assert_eq!(iter.next_back().unwrap(), arr3(&[[[12, 13]], [[26, 27]]]));Run
fn axis_chunks_iter_mut(&mut self, axis: Axis, size: usize) -> AxisChunksIterMut<A, D> where S: DataMut
Return an iterator that traverses over axis
by chunks of size
,
yielding non-overlapping read-write views along that axis.
Iterator element is ArrayViewMut<A, D>
Panics if axis
is out of bounds.
fn diag(&self) -> ArrayView1<A>
Return an view of the diagonal elements of the array.
The diagonal is simply the sequence indexed by (0, 0, .., 0), (1, 1, ..., 1) etc as long as all axes have elements.
fn diag_mut(&mut self) -> ArrayViewMut1<A> where S: DataMut
Return a read-write view over the diagonal elements of the array.
fn into_diag(self) -> ArrayBase<S, Ix1>
Return the diagonal as a one-dimensional array.
fn is_standard_layout(&self) -> bool
Return true
if the array data is laid out in contiguous “C order” in
memory (where the last index is the most rapidly varying).
Return false
otherwise, i.e the array is possibly not
contiguous in memory, it has custom strides, etc.
fn as_ptr(&self) -> *const A
Return a pointer to the first element in the array.
Raw access to array elements needs to follow the strided indexing scheme: an element at multi-index I in an array with strides S is located at offset
Σ0 ≤ k < d Ik × Sk
where d is self.ndim()
.
fn as_mut_ptr(&mut self) -> *mut A where S: DataMut
Return a mutable pointer to the first element in the array.
fn as_slice(&self) -> Option<&[A]>
Return the array’s data as a slice, if it is contiguous and in standard order.
Return None
otherwise.
If this function returns Some(_)
, then the element order in the slice
corresponds to the logical order of the array’s elements.
fn as_slice_mut(&mut self) -> Option<&mut [A]> where S: DataMut
Return the array’s data as a slice, if it is contiguous and in standard order.
Return None
otherwise.
fn as_slice_memory_order(&self) -> Option<&[A]>
Return the array’s data as a slice if it is contiguous,
return None
otherwise.
If this function returns Some(_)
, then the elements in the slice
have whatever order the elements have in memory.
Implementation notes: Does not yet support negatively strided arrays.
fn as_slice_memory_order_mut(&mut self) -> Option<&mut [A]> where S: DataMut
Return the array’s data as a slice if it is contiguous,
return None
otherwise.
fn reshape<E>(&self, shape: E) -> ArrayBase<S, E> where S: DataShared + DataOwned, A: Clone, E: Dimension
Transform the array into shape
; any shape with the same number of
elements is accepted.
May clone all elements if needed to arrange elements in standard layout (and break sharing).
Panics if shapes are incompatible.
use ndarray::{rcarr1, rcarr2}; assert!( rcarr1(&[1., 2., 3., 4.]).reshape((2, 2)) == rcarr2(&[[1., 2.], [3., 4.]]) );Run
fn into_shape<E>(self, shape: E) -> Result<ArrayBase<S, E>, ShapeError> where E: Dimension
Transform the array into shape
; any shape with the same number of
elements is accepted, but the source array or view must be
contiguous, otherwise we cannot rearrange the dimension.
Errors if the shapes don't have the same number of elements.
Errors if the input array is not c- or f-contiguous.
use ndarray::{aview1, aview2}; assert!( aview1(&[1., 2., 3., 4.]).into_shape((2, 2)).unwrap() == aview2(&[[1., 2.], [3., 4.]]) );Run
fn broadcast<E>(&self, dim: E) -> Option<ArrayView<A, E>> where E: Dimension
Act like a larger size and/or shape array by broadcasting into a larger shape, if possible.
Return None
if shapes can not be broadcast together.
Background
- Two axes are compatible if they are equal, or one of them is 1.
- In this instance, only the axes of the smaller side (self) can be 1.
Compare axes beginning with the last axis of each shape.
For example (1, 2, 4) can be broadcast into (7, 6, 2, 4) because its axes are either equal or 1 (or missing); while (2, 2) can not be broadcast into (2, 4).
The implementation creates a view with strides set to zero for the axes that are to be repeated.
The broadcasting documentation for Numpy has more information.
use ndarray::{aview1, aview2}; assert!( aview1(&[1., 0.]).broadcast((10, 2)).unwrap() == aview2(&[[1., 0.]; 10]) );Run
fn swap_axes(&mut self, ax: usize, bx: usize)
Swap axes ax
and bx
.
This does not move any data, it just adjusts the array’s dimensions and strides.
Panics if the axes are out of bounds.
use ndarray::arr2; let mut a = arr2(&[[1., 2., 3.]]); a.swap_axes(0, 1); assert!( a == arr2(&[[1.], [2.], [3.]]) );Run
fn reversed_axes(self) -> ArrayBase<S, D>
Transpose the array by reversing axes.
Transposition reverses the order of the axes (dimensions and strides) while retaining the same data.
fn t(&self) -> ArrayView<A, D>
Return a transposed view of the array.
This is a shorthand for self.view().reversed_axes()
.
See also the more general methods .reversed_axes()
and .swap_axes()
.
fn assign<E: Dimension, S2>(&mut self, rhs: &ArrayBase<S2, E>) where S: DataMut, A: Clone, S2: Data<Elem=A>
Perform an elementwise assigment to self
from rhs
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn assign_scalar(&mut self, x: &A) where S: DataMut, A: Clone
Perform an elementwise assigment to self
from scalar x
.
fn zip_mut_with<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, f: F) where S: DataMut, S2: Data<Elem=B>, E: Dimension, F: FnMut(&mut A, &B)
Traverse two arrays in unspecified order, in lock step,
calling the closure f
on each element pair.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn fold<'a, F, B>(&'a self, init: B, f: F) -> B where F: FnMut(B, &'a A) -> B, A: 'a
Traverse the array elements and apply a fold, returning the resulting value.
Elements are visited in arbitrary order.
fn map<'a, B, F>(&'a self, f: F) -> Array<B, D> where F: FnMut(&'a A) -> B, A: 'a
Call f
by reference on each element and create a new array
with the new values.
Elements are visited in arbitrary order.
Return an array with the same shape as self
.
use ndarray::arr2; let a = arr2(&[[ 0., 1.], [-1., 2.]]); assert!( a.map(|x| *x >= 1.0) == arr2(&[[false, true], [false, true]]) );Run
fn mapv<B, F>(&self, f: F) -> Array<B, D> where F: Fn(A) -> B, A: Clone
Call f
by value on each element and create a new array
with the new values.
Elements are visited in arbitrary order.
Return an array with the same shape as self
.
use ndarray::arr2; let a = arr2(&[[ 0., 1.], [-1., 2.]]); assert!( a.mapv(f32::abs) == arr2(&[[0., 1.], [1., 2.]]) );Run
fn mapv_into<F>(self, f: F) -> Self where S: DataMut, F: Fn(A) -> A, A: Clone
Call f
by value on each element, update the array with the new values
and return it.
Elements are visited in arbitrary order.
fn map_inplace<F>(&mut self, f: F) where S: DataMut, F: Fn(&mut A)
Modify the array in place by calling f
by mutable reference on each element.
Elements are visited in arbitrary order.
fn mapv_inplace<F>(&mut self, f: F) where S: DataMut, F: Fn(A) -> A, A: Clone
Modify the array in place by calling f
by value on each element.
The array is updated with the new values.
Elements are visited in arbitrary order.
use ndarray::arr2; let mut a = arr2(&[[ 0., 1.], [-1., 2.]]); a.mapv_inplace(f32::exp); assert!( a.all_close(&arr2(&[[1.00000, 2.71828], [0.36788, 7.38906]]), 1e-5) );Run
fn visit<'a, F>(&'a self, f: F) where F: FnMut(&'a A), A: 'a
Visit each element in the array by calling f
by reference
on each element.
Elements are visited in arbitrary order.
fn fold_axis<B, F>(&self, axis: Axis, init: B, fold: F) -> Array<B, D::Smaller> where D: RemoveAxis, F: FnMut(&B, &A) -> B, B: Clone
Fold along an axis.
Combine the elements of each subview with the previous using the fold
function and initial value init
.
Return the result as an Array
.
fn map_axis<'a, B, F>(&'a self, axis: Axis, mapping: F) -> Array<B, D::Smaller> where D: RemoveAxis, F: FnMut(ArrayView1<'a, A>) -> B, A: 'a
Reduce the values along an axis into just one value, producing a new array with one less dimension.
Elements are visited in arbitrary order.
Return the result as an Array
.
Panics if axis
is out of bounds.
impl<A, D> ArrayBase<Vec<A>, D> where D: Dimension
[src]
fn into_raw_vec(self) -> Vec<A>
Return a vector of the elements in the array, in the way they are stored internally.
If the array is in standard memory layout, the logical element order
of the array (.iter()
order) and of the returned vector will be the same.
impl<A, S> ArrayBase<S, Ix2> where S: Data<Elem=A>
[src]
fn row(&self, index: Ix) -> ArrayView1<A>
Return an array view of row index
.
Panics if index
is out of bounds.
fn row_mut(&mut self, index: Ix) -> ArrayViewMut1<A> where S: DataMut
Return a mutable array view of row index
.
Panics if index
is out of bounds.
fn rows(&self) -> usize
Return the number of rows (length of Axis(0)
) in the two-dimensional array.
fn column(&self, index: Ix) -> ArrayView1<A>
Return an array view of column index
.
Panics if index
is out of bounds.
fn column_mut(&mut self, index: Ix) -> ArrayViewMut1<A> where S: DataMut
Return a mutable array view of column index
.
Panics if index
is out of bounds.
fn cols(&self) -> usize
Return the number of columns (length of Axis(1)
) in the two-dimensional array.
impl<A, S, D> ArrayBase<S, D> where S: Data<Elem=A>, D: Dimension
[src]
Numerical methods for arrays.
fn scalar_sum(&self) -> A where A: Clone + Add<Output=A> + Zero
Return the sum of all elements in the array.
use ndarray::arr2; let a = arr2(&[[1., 2.], [3., 4.]]); assert_eq!(a.scalar_sum(), 10.);Run
fn sum(&self, axis: Axis) -> Array<A, D::Smaller> where A: Clone + Zero + Add<Output=A>, D: RemoveAxis
Return sum along axis
.
use ndarray::{aview0, aview1, arr2, Axis}; let a = arr2(&[[1., 2.], [3., 4.]]); assert!( a.sum(Axis(0)) == aview1(&[4., 6.]) && a.sum(Axis(1)) == aview1(&[3., 7.]) && a.sum(Axis(0)).sum(Axis(0)) == aview0(&10.) );Run
Panics if axis
is out of bounds.
fn mean(&self, axis: Axis) -> Array<A, D::Smaller> where A: LinalgScalar, D: RemoveAxis
Return mean along axis
.
Panics if axis
is out of bounds.
use ndarray::{aview1, arr2, Axis}; let a = arr2(&[[1., 2.], [3., 4.]]); assert!( a.mean(Axis(0)) == aview1(&[2.0, 3.0]) && a.mean(Axis(1)) == aview1(&[1.5, 3.5]) );Run
fn all_close<S2, E>(&self, rhs: &ArrayBase<S2, E>, tol: A) -> bool where A: Float, S2: Data<Elem=A>, E: Dimension
Return true
if the arrays' elementwise differences are all within
the given absolute tolerance, false
otherwise.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting to the same shape isn’t possible.
impl<A, S> ArrayBase<S, Ix> where S: Data<Elem=A>
[src]
fn dot<S2>(&self, rhs: &ArrayBase<S2, Ix>) -> A where S2: Data<Elem=A>, A: LinalgScalar
Compute the dot product of one-dimensional arrays.
The dot product is a sum of the elementwise products (no conjugation of complex operands, and thus not their inner product).
Panics if the arrays are not of the same length.
impl<A, S> ArrayBase<S, Ix2> where S: Data<Elem=A>
[src]
fn dot<Rhs>(&self, rhs: &Rhs) -> Self::Output where Self: Dot<Rhs>
Perform matrix multiplication of rectangular arrays self
and rhs
.
Rhs
may be either a one-dimensional or a two-dimensional array.
If Rhs is two-dimensional, they array shapes must agree in the way that
if self
is M × N, then rhs
is N × K.
Return a result array with shape M × K.
Panics if shapes are incompatible.
use ndarray::arr2; let a = arr2(&[[1., 2.], [0., 1.]]); let b = arr2(&[[1., 2.], [2., 3.]]); assert!( a.dot(&b) == arr2(&[[5., 8.], [2., 3.]]) );Run
impl<A, S, D> ArrayBase<S, D> where S: Data<Elem=A>, D: Dimension
[src]
fn scaled_add<S2, E>(&mut self, alpha: A, rhs: &ArrayBase<S2, E>) where S: DataMut, S2: Data<Elem=A>, A: LinalgScalar, E: Dimension
Perform the operation self += alpha * rhs
efficiently, where
alpha
is a scalar and rhs
is another array. This operation is
also known as axpy
in BLAS.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
impl<'a, A, D> ArrayBase<ViewRepr<&'a A>, D> where D: Dimension
[src]
Methods for Array Views
Methods for read-only array views ArrayView<'a, A, D>
Note that array views implement traits like From
and IntoIterator
too.
fn from_shape<Sh>(shape: Sh, xs: &'a [A]) -> Result<Self, ShapeError> where Sh: Into<StrideShape<D>>
Create a read-only array view borrowing its data from a slice.
Checks whether shape
are compatible with the slice's
length, returning an Err
if not compatible.
use ndarray::ArrayView; use ndarray::arr3; use ndarray::ShapeBuilder; let s = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; let a = ArrayView::from_shape((2, 3, 2).strides((1, 4, 2)), &s).unwrap(); assert!( a == arr3(&[[[0, 2], [4, 6], [8, 10]], [[1, 3], [5, 7], [9, 11]]]) ); assert!(a.strides() == &[1, 4, 2]);Run
unsafe fn from_shape_ptr<Sh>(shape: Sh, ptr: *const A) -> Self where Sh: Into<StrideShape<D>>
Create an ArrayView<A, D>
from shape information and a
raw pointer to the elements.
Unsafe because caller is responsible for ensuring that the pointer is valid, not mutably aliased and coherent with the dimension and stride information.
fn split_at(self, axis: Axis, index: Ix) -> (Self, Self)
Split the array along axis
and return one view strictly before the
split and one view after the split.
Panics if axis
or index
is out of bounds.
Below, an illustration of .split_at(Axis(2), 2)
on
an array with shape 3 × 5 × 5.
impl<'a, A, D> ArrayBase<ViewRepr<&'a mut A>, D> where D: Dimension
[src]
Methods for read-write array views ArrayViewMut<'a, A, D>
Note that array views implement traits like From
and IntoIterator
too.
fn from_shape<Sh>(shape: Sh, xs: &'a mut [A]) -> Result<Self, ShapeError> where Sh: Into<StrideShape<D>>
Create a read-write array view borrowing its data from a slice.
Checks whether dim
and strides
are compatible with the slice's
length, returning an Err
if not compatible.
use ndarray::ArrayViewMut; use ndarray::arr3; use ndarray::ShapeBuilder; let mut s = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; let mut a = ArrayViewMut::from_shape((2, 3, 2).strides((1, 4, 2)), &mut s).unwrap(); a[[0, 0, 0]] = 1; assert!( a == arr3(&[[[1, 2], [4, 6], [8, 10]], [[1, 3], [5, 7], [9, 11]]]) ); assert!(a.strides() == &[1, 4, 2]);Run
unsafe fn from_shape_ptr<Sh>(shape: Sh, ptr: *mut A) -> Self where Sh: Into<StrideShape<D>>
Create an ArrayViewMut<A, D>
from shape information and a
raw pointer to the elements.
Unsafe because caller is responsible for ensuring that the pointer is valid, not aliased and coherent with the dimension and stride information.
fn split_at(self, axis: Axis, index: Ix) -> (Self, Self)
Split the array along axis
and return one mutable view strictly
before the split and one mutable view after the split.
Panics if axis
or index
is out of bounds.
Trait Implementations
impl<S, D, I> Index<I> for ArrayBase<S, D> where D: Dimension, I: NdIndex<Dim=D>, S: Data
[src]
Access the element at index.
Panics if index is out of bounds.
type Output = S::Elem
The returned type after indexing
fn index(&self, index: I) -> &S::Elem
The method for the indexing (Foo[Bar]
) operation
impl<S, D, I> IndexMut<I> for ArrayBase<S, D> where D: Dimension, I: NdIndex<Dim=D>, S: DataMut
[src]
Access the element at index mutably.
Panics if index is out of bounds.
fn index_mut(&mut self, index: I) -> &mut S::Elem
The method for the indexing (Foo[Bar]
) operation
impl<S, S2, D> PartialEq<ArrayBase<S2, D>> for ArrayBase<S, D> where D: Dimension, S: Data, S2: Data<Elem=S::Elem>, S::Elem: PartialEq
[src]
Return true
if the array shapes and all elements of self
and
rhs
are equal. Return false
otherwise.
fn eq(&self, rhs: &ArrayBase<S2, D>) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0
This method tests for !=
.
impl<S, D> Eq for ArrayBase<S, D> where D: Dimension, S: Data, S::Elem: Eq
[src]
impl<A, S> FromIterator<A> for ArrayBase<S, Ix1> where S: DataOwned<Elem=A>
[src]
fn from_iter<I>(iterable: I) -> ArrayBase<S, Ix1> where I: IntoIterator<Item=A>
Creates a value from an iterator. Read more
impl<'a, S, D> IntoIterator for &'a ArrayBase<S, D> where D: Dimension, S: Data
[src]
type Item = &'a S::Elem
The type of the elements being iterated over.
type IntoIter = Elements<'a, S::Elem, D>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
Creates an iterator from a value. Read more
impl<'a, S, D> IntoIterator for &'a mut ArrayBase<S, D> where D: Dimension, S: DataMut
[src]
type Item = &'a mut S::Elem
The type of the elements being iterated over.
type IntoIter = ElementsMut<'a, S::Elem, D>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
Creates an iterator from a value. Read more
impl<'a, S, D> Hash for ArrayBase<S, D> where D: Dimension, S: Data, S::Elem: Hash
[src]
fn hash<H: Hasher>(&self, state: &mut H)
Feeds this value into the state given, updating the hasher as necessary.
fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher
1.3.0
Feeds a slice of this type into the state provided.
impl<S, D> Sync for ArrayBase<S, D> where S: Sync + Data, D: Sync
[src]
ArrayBase
is Sync
when the storage type is.
impl<S, D> Send for ArrayBase<S, D> where S: Send + Data, D: Send
[src]
ArrayBase
is Send
when the storage type is.
impl<'a, A, Slice: ?Sized> From<&'a Slice> for ArrayBase<ViewRepr<&'a A>, Ix1> where Slice: AsRef<[A]>
[src]
Implementation of ArrayView::from(&S)
where S
is a slice or slicable.
Create a one-dimensional read-only array view of the data in slice
.
fn from(slice: &'a Slice) -> Self
Performs the conversion.
impl<'a, A, S, D> From<&'a ArrayBase<S, D>> for ArrayBase<ViewRepr<&'a A>, D> where S: Data<Elem=A>, D: Dimension
[src]
Implementation of ArrayView::from(&A)
where A
is an array.
Create a read-only array view of the array.
impl<'a, A, Slice: ?Sized> From<&'a mut Slice> for ArrayBase<ViewRepr<&'a mut A>, Ix1> where Slice: AsMut<[A]>
[src]
Implementation of ArrayViewMut::from(&mut S)
where S
is a slice or slicable.
Create a one-dimensional read-write array view of the data in slice
.
fn from(slice: &'a mut Slice) -> Self
Performs the conversion.
impl<'a, A, S, D> From<&'a mut ArrayBase<S, D>> for ArrayBase<ViewRepr<&'a mut A>, D> where S: DataMut<Elem=A>, D: Dimension
[src]
Implementation of ArrayViewMut::from(&mut A)
where A
is an array.
Create a read-write array view of the array.
impl<A, S, D> Default for ArrayBase<S, D> where S: DataOwned<Elem=A>, D: Dimension, A: Default
[src]
Create an owned array with a default state.
The array is created with dimension D::default()
, which results
in for example dimensions 0
and (0, 0)
with zero elements for the
one-dimensional and two-dimensional cases respectively, while for example
the zero dimensional case uses ()
(or Vec::new()
) which
results in an array with one element.
Since arrays cannot grow, the intention is to use the default value as placeholder.
impl<'a, A: Display, S, D: Dimension> Display for ArrayBase<S, D> where S: Data<Elem=A>
[src]
Format the array using Display
and apply the formatting parameters used
to each element.
The array is shown in multiline style, unless the alternate form
is used, {:#}
.
impl<'a, A: Debug, S, D: Dimension> Debug for ArrayBase<S, D> where S: Data<Elem=A>
[src]
Format the array using Debug
and apply the formatting parameters used
to each element.
The array is shown in multiline style, unless the alternate form
is used, {:#?}
.
impl<'a, A: LowerExp, S, D: Dimension> LowerExp for ArrayBase<S, D> where S: Data<Elem=A>
[src]
Format the array using LowerExp
and apply the formatting parameters used
to each element.
The array is shown in multiline style, unless the alternate form
is used, {:#e}
.
impl<'a, A: UpperExp, S, D: Dimension> UpperExp for ArrayBase<S, D> where S: Data<Elem=A>
[src]
Format the array using UpperExp
and apply the formatting parameters used
to each element.
The array is shown in multiline style, unless the alternate form
is used, {:#E}
.
impl<'a, A: LowerHex, S, D: Dimension> LowerHex for ArrayBase<S, D> where S: Data<Elem=A>
[src]
Format the array using LowerHex
and apply the formatting parameters used
to each element.
The array is shown in multiline style, unless the alternate form
is used, {:#x}
.
impl<S: DataClone, D: Clone> Clone for ArrayBase<S, D>
[src]
fn clone(&self) -> ArrayBase<S, D>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl<S: DataClone + Copy, D: Copy> Copy for ArrayBase<S, D>
[src]
impl<A, S, S2> Dot<ArrayBase<S2, Ix2>> for ArrayBase<S, Ix2> where S: Data<Elem=A>, S2: Data<Elem=A>, A: LinalgScalar
[src]
type Output = Array2<A>
The result of the operation. Read more
fn dot(&self, b: &ArrayBase<S2, Ix2>) -> Array2<A>
impl<A, S, S2> Dot<ArrayBase<S2, Ix>> for ArrayBase<S, Ix2> where S: Data<Elem=A>, S2: Data<Elem=A>, A: LinalgScalar
[src]
Perform the matrix multiplication of the rectangular array self
and
column vector rhs
.
The array shapes must agree in the way that
if self
is M × N, then rhs
is N.
Return a result array with shape M.
Panics if shapes are incompatible.
type Output = Array<A, Ix>
The result of the operation. Read more
fn dot(&self, rhs: &ArrayBase<S2, Ix>) -> Array<A, Ix>
impl<A, S, S2, D, E> Add<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Add<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
addition
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the +
operator
fn add(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the +
operator
impl<'a, A, S, S2, D, E> Add<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Add<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
addition
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the +
operator
fn add(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the +
operator
impl<'a, 'b, A, S, S2, D, E> Add<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + Add<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
addition
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the +
operator
fn add(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the +
operator
impl<A, S, D, B> Add<B> for ArrayBase<S, D> where A: Clone + Add<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
addition
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the +
operator
fn add(self, x: B) -> ArrayBase<S, D>
The method for the +
operator
impl<'a, A, S, D, B> Add<B> for &'a ArrayBase<S, D> where A: Clone + Add<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
addition
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the +
operator
fn add(self, x: B) -> Array<A, D>
The method for the +
operator
impl<A, S, S2, D, E> Sub<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Sub<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
subtraction
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the -
operator
fn sub(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the -
operator
impl<'a, A, S, S2, D, E> Sub<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Sub<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
subtraction
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the -
operator
fn sub(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the -
operator
impl<'a, 'b, A, S, S2, D, E> Sub<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + Sub<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
subtraction
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the -
operator
fn sub(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the -
operator
impl<A, S, D, B> Sub<B> for ArrayBase<S, D> where A: Clone + Sub<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
subtraction
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the -
operator
fn sub(self, x: B) -> ArrayBase<S, D>
The method for the -
operator
impl<'a, A, S, D, B> Sub<B> for &'a ArrayBase<S, D> where A: Clone + Sub<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
subtraction
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the -
operator
fn sub(self, x: B) -> Array<A, D>
The method for the -
operator
impl<A, S, S2, D, E> Mul<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Mul<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
multiplication
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the *
operator
fn mul(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the *
operator
impl<'a, A, S, S2, D, E> Mul<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Mul<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
multiplication
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the *
operator
fn mul(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the *
operator
impl<'a, 'b, A, S, S2, D, E> Mul<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + Mul<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
multiplication
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the *
operator
fn mul(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the *
operator
impl<A, S, D, B> Mul<B> for ArrayBase<S, D> where A: Clone + Mul<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
multiplication
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the *
operator
fn mul(self, x: B) -> ArrayBase<S, D>
The method for the *
operator
impl<'a, A, S, D, B> Mul<B> for &'a ArrayBase<S, D> where A: Clone + Mul<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
multiplication
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the *
operator
fn mul(self, x: B) -> Array<A, D>
The method for the *
operator
impl<A, S, S2, D, E> Div<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Div<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
division
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the /
operator
fn div(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the /
operator
impl<'a, A, S, S2, D, E> Div<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Div<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
division
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the /
operator
fn div(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the /
operator
impl<'a, 'b, A, S, S2, D, E> Div<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + Div<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
division
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the /
operator
fn div(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the /
operator
impl<A, S, D, B> Div<B> for ArrayBase<S, D> where A: Clone + Div<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
division
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the /
operator
fn div(self, x: B) -> ArrayBase<S, D>
The method for the /
operator
impl<'a, A, S, D, B> Div<B> for &'a ArrayBase<S, D> where A: Clone + Div<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
division
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the /
operator
fn div(self, x: B) -> Array<A, D>
The method for the /
operator
impl<A, S, S2, D, E> Rem<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Rem<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
remainder
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the %
operator
fn rem(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the %
operator
impl<'a, A, S, S2, D, E> Rem<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Rem<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
remainder
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the %
operator
fn rem(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the %
operator
impl<'a, 'b, A, S, S2, D, E> Rem<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + Rem<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
remainder
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the %
operator
fn rem(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the %
operator
impl<A, S, D, B> Rem<B> for ArrayBase<S, D> where A: Clone + Rem<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
remainder
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the %
operator
fn rem(self, x: B) -> ArrayBase<S, D>
The method for the %
operator
impl<'a, A, S, D, B> Rem<B> for &'a ArrayBase<S, D> where A: Clone + Rem<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
remainder
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the %
operator
fn rem(self, x: B) -> Array<A, D>
The method for the %
operator
impl<A, S, S2, D, E> BitAnd<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitAnd<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit and
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the &
operator
fn bitand(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the &
operator
impl<'a, A, S, S2, D, E> BitAnd<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitAnd<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit and
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the &
operator
fn bitand(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the &
operator
impl<'a, 'b, A, S, S2, D, E> BitAnd<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + BitAnd<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit and
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the &
operator
fn bitand(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the &
operator
impl<A, S, D, B> BitAnd<B> for ArrayBase<S, D> where A: Clone + BitAnd<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
bit and
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the &
operator
fn bitand(self, x: B) -> ArrayBase<S, D>
The method for the &
operator
impl<'a, A, S, D, B> BitAnd<B> for &'a ArrayBase<S, D> where A: Clone + BitAnd<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
bit and
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the &
operator
fn bitand(self, x: B) -> Array<A, D>
The method for the &
operator
impl<A, S, S2, D, E> BitOr<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitOr<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit or
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the |
operator
fn bitor(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the |
operator
impl<'a, A, S, S2, D, E> BitOr<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitOr<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit or
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the |
operator
fn bitor(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the |
operator
impl<'a, 'b, A, S, S2, D, E> BitOr<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + BitOr<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit or
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the |
operator
fn bitor(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the |
operator
impl<A, S, D, B> BitOr<B> for ArrayBase<S, D> where A: Clone + BitOr<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
bit or
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the |
operator
fn bitor(self, x: B) -> ArrayBase<S, D>
The method for the |
operator
impl<'a, A, S, D, B> BitOr<B> for &'a ArrayBase<S, D> where A: Clone + BitOr<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
bit or
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the |
operator
fn bitor(self, x: B) -> Array<A, D>
The method for the |
operator
impl<A, S, S2, D, E> BitXor<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitXor<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit xor
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the ^
operator
fn bitxor(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the ^
operator
impl<'a, A, S, S2, D, E> BitXor<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitXor<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit xor
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the ^
operator
fn bitxor(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the ^
operator
impl<'a, 'b, A, S, S2, D, E> BitXor<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + BitXor<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
bit xor
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the ^
operator
fn bitxor(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the ^
operator
impl<A, S, D, B> BitXor<B> for ArrayBase<S, D> where A: Clone + BitXor<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
bit xor
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the ^
operator
fn bitxor(self, x: B) -> ArrayBase<S, D>
The method for the ^
operator
impl<'a, A, S, D, B> BitXor<B> for &'a ArrayBase<S, D> where A: Clone + BitXor<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
bit xor
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the ^
operator
fn bitxor(self, x: B) -> Array<A, D>
The method for the ^
operator
impl<A, S, S2, D, E> Shl<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Shl<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
left shift
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the <<
operator
fn shl(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the <<
operator
impl<'a, A, S, S2, D, E> Shl<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Shl<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
left shift
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the <<
operator
fn shl(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the <<
operator
impl<'a, 'b, A, S, S2, D, E> Shl<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + Shl<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
left shift
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the <<
operator
fn shl(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the <<
operator
impl<A, S, D, B> Shl<B> for ArrayBase<S, D> where A: Clone + Shl<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
left shift
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the <<
operator
fn shl(self, x: B) -> ArrayBase<S, D>
The method for the <<
operator
impl<'a, A, S, D, B> Shl<B> for &'a ArrayBase<S, D> where A: Clone + Shl<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
left shift
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the <<
operator
fn shl(self, x: B) -> Array<A, D>
The method for the <<
operator
impl<A, S, S2, D, E> Shr<ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Shr<A, Output=A>, S: DataOwned<Elem=A> + DataMut, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
right shift
between self
and rhs
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the >>
operator
fn shr(self, rhs: ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the >>
operator
impl<'a, A, S, S2, D, E> Shr<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + Shr<A, Output=A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
right shift
between self
and reference rhs
,
and return the result (based on self
).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = ArrayBase<S, D>
The resulting type after applying the >>
operator
fn shr(self, rhs: &ArrayBase<S2, E>) -> ArrayBase<S, D>
The method for the >>
operator
impl<'a, 'b, A, S, S2, D, E> Shr<&'a ArrayBase<S2, E>> for &'b ArrayBase<S, D> where A: Clone + Shr<A, Output=A>, S: Data<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform elementwise
right shift
between references self
and rhs
,
and return the result as a new Array
.
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
type Output = Array<A, D>
The resulting type after applying the >>
operator
fn shr(self, rhs: &'a ArrayBase<S2, E>) -> Array<A, D>
The method for the >>
operator
impl<A, S, D, B> Shr<B> for ArrayBase<S, D> where A: Clone + Shr<B, Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
right shift
between self
and the scalar x
,
and return the result (based on self
).
self
must be an Array
or RcArray
.
type Output = ArrayBase<S, D>
The resulting type after applying the >>
operator
fn shr(self, x: B) -> ArrayBase<S, D>
The method for the >>
operator
impl<'a, A, S, D, B> Shr<B> for &'a ArrayBase<S, D> where A: Clone + Shr<B, Output=A>, S: Data<Elem=A>, D: Dimension, B: ScalarOperand
[src]
Perform elementwise
right shift
between the reference self
and the scalar x
,
and return the result as a new Array
.
type Output = Array<A, D>
The resulting type after applying the >>
operator
fn shr(self, x: B) -> Array<A, D>
The method for the >>
operator
impl<A, S, D> Neg for ArrayBase<S, D> where A: Clone + Neg<Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension
[src]
type Output = Self
The resulting type after applying the -
operator
fn neg(self) -> Self
Perform an elementwise negation of self
and return the result.
impl<A, S, D> Not for ArrayBase<S, D> where A: Clone + Not<Output=A>, S: DataOwned<Elem=A> + DataMut, D: Dimension
[src]
type Output = Self
The resulting type after applying the !
operator
fn not(self) -> Self
Perform an elementwise unary not of self
and return the result.
impl<'a, A, S, S2, D, E> AddAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + AddAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self += rhs
as elementwise addition (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn add_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the +=
operator
impl<A, S, D> AddAssign<A> for ArrayBase<S, D> where A: ScalarOperand + AddAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self += rhs
as elementwise addition (in place).
fn add_assign(&mut self, rhs: A)
The method for the +=
operator
impl<'a, A, S, S2, D, E> SubAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + SubAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self -= rhs
as elementwise subtraction (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn sub_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the -=
operator
impl<A, S, D> SubAssign<A> for ArrayBase<S, D> where A: ScalarOperand + SubAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self -= rhs
as elementwise subtraction (in place).
fn sub_assign(&mut self, rhs: A)
The method for the -=
operator
impl<'a, A, S, S2, D, E> MulAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + MulAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self *= rhs
as elementwise multiplication (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn mul_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the *=
operator
impl<A, S, D> MulAssign<A> for ArrayBase<S, D> where A: ScalarOperand + MulAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self *= rhs
as elementwise multiplication (in place).
fn mul_assign(&mut self, rhs: A)
The method for the *=
operator
impl<'a, A, S, S2, D, E> DivAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + DivAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self /= rhs
as elementwise division (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn div_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the /=
operator
impl<A, S, D> DivAssign<A> for ArrayBase<S, D> where A: ScalarOperand + DivAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self /= rhs
as elementwise division (in place).
fn div_assign(&mut self, rhs: A)
The method for the /=
operator
impl<'a, A, S, S2, D, E> RemAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + RemAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self %= rhs
as elementwise remainder (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn rem_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the %=
operator
impl<A, S, D> RemAssign<A> for ArrayBase<S, D> where A: ScalarOperand + RemAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self %= rhs
as elementwise remainder (in place).
fn rem_assign(&mut self, rhs: A)
The method for the %=
operator
impl<'a, A, S, S2, D, E> BitAndAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitAndAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self &= rhs
as elementwise bit and (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn bitand_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the &
operator
impl<A, S, D> BitAndAssign<A> for ArrayBase<S, D> where A: ScalarOperand + BitAndAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self &= rhs
as elementwise bit and (in place).
fn bitand_assign(&mut self, rhs: A)
The method for the &
operator
impl<'a, A, S, S2, D, E> BitOrAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitOrAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self |= rhs
as elementwise bit or (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn bitor_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the |=
operator
impl<A, S, D> BitOrAssign<A> for ArrayBase<S, D> where A: ScalarOperand + BitOrAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self |= rhs
as elementwise bit or (in place).
fn bitor_assign(&mut self, rhs: A)
The method for the |=
operator
impl<'a, A, S, S2, D, E> BitXorAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + BitXorAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self ^= rhs
as elementwise bit xor (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn bitxor_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the ^=
operator
impl<A, S, D> BitXorAssign<A> for ArrayBase<S, D> where A: ScalarOperand + BitXorAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self ^= rhs
as elementwise bit xor (in place).
fn bitxor_assign(&mut self, rhs: A)
The method for the ^=
operator
impl<'a, A, S, S2, D, E> ShlAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + ShlAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self <<= rhs
as elementwise left shift (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn shl_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the <<=
operator
impl<A, S, D> ShlAssign<A> for ArrayBase<S, D> where A: ScalarOperand + ShlAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self <<= rhs
as elementwise left shift (in place).
fn shl_assign(&mut self, rhs: A)
The method for the <<=
operator
impl<'a, A, S, S2, D, E> ShrAssign<&'a ArrayBase<S2, E>> for ArrayBase<S, D> where A: Clone + ShrAssign<A>, S: DataMut<Elem=A>, S2: Data<Elem=A>, D: Dimension, E: Dimension
[src]
Perform self >>= rhs
as elementwise right shift (in place).
If their shapes disagree, rhs
is broadcast to the shape of self
.
Panics if broadcasting isn’t possible.
fn shr_assign(&mut self, rhs: &ArrayBase<S2, E>)
The method for the >>=
operator
impl<A, S, D> ShrAssign<A> for ArrayBase<S, D> where A: ScalarOperand + ShrAssign<A>, S: DataMut<Elem=A>, D: Dimension
[src]
Perform self >>= rhs
as elementwise right shift (in place).
fn shr_assign(&mut self, rhs: A)
The method for the >>=
operator